CDO User Guide

Climate Data Operator
Version 2.5.3
July 2025

Uwe Schulzweida — MPI for Meteorology

Contents

1.

Introduction
1.1. Imstallation e e e
1T11. Unix . . o oo e e e
1.1.2. MacOS e
1.1.3. Windows L e
1.2 Usage . . . o o o e e
1.2.1. Options o oo o e e
1.2.2. Environment variables e
1.2.3. Operatorso e e
1.2.4. Parallelized operators e e
1.2.5. Operator parameter e e e
1.2.6. Operator chaining e
1.2.7. Chaining Benefits e
1.3. Advanced Usage
1.3.1. Wildcards oo
1.3.2. Argument Groups e e
1.3.3. Applying a operator or chain to multiple inputs
1.3.4. Apply with [:] notation L
1.3.5. Apply Keyword (LEGACY) o o e
1.4. Memory Requirements
1.5. Horizontal grids oL
1.5.1. Grid area weights
1.5.2. Grid description L e
1.5.3. ICON - Grid File Server e
1.6. Z-axis descriptiono
1.7. Time axis o o o e e e e
1.7.1. Absolute time
1.7.2. Relative time e
1.7.3. Conversion of the time
1.8. Parameter table e e e
1.9. Missing values e
1.9.1. Mean and averageo e e e
1.10. Percentile L e e
1.10.1. Percentile over timesteps L e
1.11. Regions L e

Reference manual

2.1.

2.2.

Information L
2.1.1. INFO - Information and simple statistics
2.1.2. SINFO - Short information
2.1.3. XSINFO - Extra short information
2.1.4. DIFF - Compare two datasets field by field
2.1.5. NINFO - Print the number of parameters, levels or times
2.1.6. SHOWINFO - Show variable information
2.1.7. SHOWATTRIBUTE - Show attributes
2.1.8. FILEDES - Dataset description
File operations e e e
2.2.1. APPLY - Apply operators e
2.2.2. COPY - Copy datasets v i i i it it et
2.2.3. TEE - Duplicate a data stream and write it to file

ESIEN N

Nel

10

11
12
12
12
12
13
13
14
14
15
15
16
17
18
18
18
19
23
23
24
24
24
25
25
25
26
26
27
27

Contents Contents

2.3.

2.4.

2.5.

2.6.

2.7.

2.24. PACK-Packdata e 42
2.2.5. UNPACK - Unpack data 42
2.2.6. SETCHUNKSPEC - Specify chunking 43
2.2.7. SETFILTER - Specify filter o 43
2.2.8. BITROUNDING - Bit rounding 44
2.2.9. REPLACE - Replace variables, 45
2.2.10. DUPLICATE - Duplicates a dataset 45
2.2.11. MERGEGRID - Merge grid o e 45
2.2.12. MERGE - Merge datasets o 46
2.2.13. SPLIT - Split a dataset 47
2.2.14. SPLITTIME - Split timesteps of a dataset 49
2.2.15. SPLITSEL - Split selected timesteps 50
2.2.16. SPLITDATE - Splits a fileintodates 50
2.2.17. DISTGRID - Distribute horizontal grid 51
2.2.18. COLLGRID - Collect horizontal grid 52
Selection o L 54
2.3.1. SELECT - Select fields e 55
2.3.2. SELMULTT - Select multiple fields via GRIB1 parameters 57
2.3.3. SELVAR - Select fields 58
2.3.4. SELTIME - Select timesteps i 60
2.3.5. SELBOX - Select abox 62
2.3.6. SELREGION - Select horizontal regions 63
2.3.7. SELGRIDCELL - Select grid cells, 64
2.3.8. SAMPLEGRID - Resample grid 64
2.3.9. SELYEARIDX - Select year by index 64
2.3.10. SELTIMEIDX - Select timestep by index 65
2.3.11. SELSURFACE - Extract surface 66
Conditional selection 67
2.4.1. COND - Conditional select one field 68
2.4.2. COND2 - Conditional select two fields 68
2.4.3. CONDC - Conditional select a constant 69
2.4.4. MAPREDUCE - Reduce fields to user-defined mask 70
Comparison e 71
2.5.1. COMP - Comparison of two fields 72
2.5.2. COMPC - Comparison of a field with a constant 73
2.5.3. YMONCOMP - Multi-year monthly comparison 74
2.5.4. YSEASCOMP - Multi-year seasonal comparison 75
Modification oL e 76
2.6.1. SETATTRIBUTE - Set attributes 78
2.6.2. SETPARTAB - Set parameter table 80
2.6.3. SET - Set fieldinfo 82
2.6.4. SETTIME - Set time s 83
2.6.5. CHANGE - Change field header 85
2.6.6. SETGRID - Set grid information 86
2.6.7. SETZAXIS - Set z-axis information 87
2.6.8. INVERT - Invert latitudes 88
2.6.9. INVERTLEV - Invert levels 88
2.6.10. SHIFTXY - Shift field 89
2.6.11. MASKREGION - Mask regions 90
2.6.12. MASKBOX - Mask abox 91
2.6.13. SETBOX - Set a box to constant 92
2.6.14. ENLARGE - Enlarge fields o 93
2.6.15. SETMISS - Set missing value o 94
2.6.16. VERTFILLMISS - Vertical filling of missing values 96
2.6.17. TIMFILLMISS - Temporal filling of missing values 96
2.6.18. SETGRIDCELL - Set the value of a grid cell 97
Arithmetic. e e 98
2.7.1. EXPR - Evaluate expressions 100

Contents Contents
2.7.2. MATH - Mathematical functions 104
2.7.3. ARITHC - Arithmetic with a constant 106
2.7.4. ARITH - Arithmetic on two datasets 107
2.7.5. DAYARITH - Daily arithmetic 108
2.7.6. MONARITH - Monthly arithmetic 109
2.7.7. YEARARITH - Yearly arithmetic 110
2.7.8. YHOURARITH - Multi-year hourly arithmetic 111
2.7.9. YDAYARITH - Multi-year daily arithmetic 112
2.7.10. YMONARITH - Multi-year monthly arithmetic 113
2.7.11. YSEASARITH - Multi-year seasonal arithmetic 114
2.7.12. ARITHDAYS - Arithmetic with days 115
2.7.13. ARITHLAT - Arithmetic with latitude 115

2.8. Statistical values L 116
2.8.1. TIMCUMSUM - Cumulative sum over all timesteps 124
2.8.2. CONSECSTAT - Consecute timestep periods 124
2.8.3. VARSSTAT - Statistical values over all variables 125
2.8.4. ENSSTAT - Statistical values over an ensemble 126
2.8.5. ENSSTAT?2 - Statistical values over an ensemble 128
2.8.6. ENSVAL - Ensemble validation tools 129
2.8.7. FLDSTAT - Statistical values over a field 131
2.8.8. ZONSTAT - Zonal statistics 133
2.8.9. MERSTAT - Meridional statistics 135
2.8.10. GRIDBOXSTAT - Statistical values over grid boxes 137
2.8.11. REMAPSTAT - Remaps source points to target cells 138
2.8.12. VERTSTAT - Vertical statistics, 140
2.8.13. TIMSELSTAT - Time range statistics 141
2.8.14. TIMSELPCTL - Time range percentile values 142
2.8.15. RUNSTAT - Running statistics 143
2.8.16. RUNPCTL - Running percentile values 144
2.8.17. TIMSTAT - Statistical values over all timesteps 145
2.8.18. TIMPCTL - Percentile values over all timesteps 146
2.8.19. HOURSTAT - Hourly statistics 147
2.8.20. HOURPCTL - Hourly percentile values 148
2.8.21. DAYSTAT - Daily statistics o 149
2.8.22. DAYPCTL - Daily percentile values 150
2.8.23. MONSTAT - Monthly statistics 151
2.8.24. MONPCTL - Monthly percentile values 152
2.8.25. YEARMONSTAT - Yearly mean from monthly data 153
2.8.26. YEARSTAT - Yearly statistics 154
2.8.27. YEARPCTL - Yearly percentile values 156
2.8.28. SEASSTAT - Seasonal statistics, 157
2.8.29. SEASPCTL - Seasonal percentile values 158
2.8.30. YHOURSTAT - Multi-year hourly statistics 159
2.8.31. DHOURSTAT - Multi-day hourly statistics 161
2.8.32. DMINUTESTAT - Multi-day by the minute statistics 163
2.8.33. YDAYSTAT - Multi-year daily statistics 165
2.8.34. YDAYPCTL - Multi-year daily percentile values 167
2.8.35. YMONSTAT - Multi-year monthly statistics 168
2.8.36. YMONPCTL - Multi-year monthly percentile values 170
2.8.37. YSEASSTAT - Multi-year seasonal statistics 171
2.8.38. YSEASPCTL - Multi-year seasonal percentile values 173
2.8.39. YDRUNSTAT - Multi-year daily running statistics 174
2.8.40. YDRUNPCTL - Multi-year daily running percentile values 176

2.9. Correlation and co. 177
2.9.1. FLDCOR - Correlation in grid space 178
2.9.2. TIMCOR - Correlation over time 178
2.9.3. FLDCOVAR - Covariance in grid space v v v o 179
2.9.4. TIMCOVAR - Covariance over time 179

Contents Contents

2.10. Regressiono e e 180
2.10.1. REGRES - Regression e 181
2.10.2. DETREND - Detrend time series o 181
2.10.3. TREND - Trend of time series 182
2.10.4. TRENDARITH - Add or subtract a trend 183

211.EOFs . . o e 184
2.11.1. EOFS - Empirical Orthogonal Functions 185
2.11.2. EOFCOEFF - Principal coefficients of EOFs 187

2.12. Interpolation 188
2.12.1. REMAPBIL - Bilinear interpolation 189
2.12.2. REMAPBIC - Bicubic interpolation 191
2.12.3. REMAPNN - Nearest neighbor remapping 193
2.12.4. REMAPDIS - Distance weighted average remapping 194
2.12.5. REMAPCON - First order conservative remapping 196
2.12.6. REMAPLAF - Largest area fraction remapping 198
2.12.7. REMAP - Grid remapping 199
2.12.8. REMAPETA - Remap vertical hybrid level 200
2.12.9. VERTINTML - Vertical interpolation 202
2.12.10.VERTINTAP - Vertical pressure interpolation 203
2.12.11.VERTINTGH - Vertical height interpolation 204
2.12.12INTLEVEL - Linear level interpolation 205
2.12.13INTLEVEL3D - Linear level interpolation from/to 3D vertical coordinates 205
2.12.14INTTIME - Time interpolation 207
2.12.15INTYEAR - Year interpolation oL 208

2.13. Transformation L e 209
2.13.1. SPECTRAL - Spectral transformation 210
2.13.2. SPECCONV - Spectral conversion 212
2.13.3. WIND2 - D and V to velocity potential and stream function 212
2.13.4. WIND - Wind transformation L 213
2.13.5. FOURIER - Fourier transformation 215

2.14. Tmport /EXporto 216
2.14.1. IMPORTBINARY - Import binary data sets 217
2.14.2. IMPORTCMSAF - Import CM-SAF HDF5 files 218
2.14.3. IMPORTAMSR - Import AMSR binary files 219
2.14.4. INPUT - Formatted input 220
2.14.5. OUTPUT - Formatted output 221
2.14.6. OUTPUTTAB - Table output e 222
2.14.7. OUTPUTGMT - GMT output e 223

2.15. Miscellaneous oL 225
2.15.1. GRADSDES - GrADS data descriptor file 227
2.15.2. AFTERBURNER - ECHAM standard post processor 228
2.15.3. FILTER - Time series filtering 230
2.15.4. GRIDCELL - Grid cell quantities 231
2.15.5. SMOOTH - Smooth grid points 232
2.15.6. DELTAT - Difference between timesteps 232
2.15.7. REPLACEVALUES - Replace variable values 233
2.15.8. GETGRIDCELL - Get grid cell index 233
2.15.9. VARGEN - Generate a field 234
2.15.10TIMSORT - Timsort o v v v oo s e e e e e 235
2.15.11.WINDTRANS - Wind Transformation 236
2.15.12ROTUVB - Rotation e 237
2.15.13MROTUVB - Backward rotation of MPIOM data 237
2.15.14MASTRFU - Mass stream function 238
2.15.15PRESSURE - Pressure on model levels. 239
2.15.16 DERIVEPAR - Derived model parameters 240
2.15.17ADISIT - Potential temperature to in-situ temperature and vice versa 241
2.15.18RHOPOT - Calculates potential density 241
2.15.19HISTOGRAM - Histogram ittt e e 242

Contents Contents

2.15.20SETHALO - Set the bounds of a field 242
2.15.21.WCT - Windchill temperature 243
2.15.22FDNS - Frost days where no snow index per time period 243
2.15.23STRWIN - Strong wind days index per time period 243
2.15.24STRBRE - Strong breeze days index per time period 244
2.15.25STRGAL - Strong gale days index per time period 244

2.15.26 HURR - Hurricane days index per time period 244
2.15.27CMORLITE - CMOR lite e e e e e 245

2.15.28 VERIFYGRID - Verify grid coordinates 246

2.15.29 HEALPIX - Change healpix resolution 247

3. Contributors 248
3.1 History o 248
3.2, External sources e 248
3.3. Contributors e 248

A. Environment Variables 252
B. Parallelized operators 253
C. Standard name table 255
D. Grid description examples 256
D.1. Example of a curvilinear grid description o oL 256
D.2. Example description for an unstructured grid oo oL 257
Index 258

1. Introduction

The Climate Data Operator (CDO) software is a collection of many operators for standard processing of
climate and forecast model data. The operators include simple statistical and arithmetic functions, data
selection and subsampling tools, and spatial interpolation. CDO was developed to have the same set of
processing functions for GRIB [GRIB] and NetCDF [NetCDF] datasets in one package.

The Climate Data Interface [CDI] is used for the fast and file format independent access to GRIB and
NetCDF datasets. The local MPI-MET data formats SERVICE, EXTRA and IEG are also supported.

There are some limitations for GRIB and NetCDF datasets:

GRIB datasets have to be consistent, similar to NetCDF. That means all time steps need to have the same
variables, and within a time step each variable may occur only once. Multiple fields in single GRIB2
messages are not supported!

NetCDF datasets are only supported for the classic data model and arrays up to 4 dimensions. These
dimensions should only be used by the horizontal and vertical grid and the time. The NetCDF
attributes should follow the GDT, COARDS or CF Conventions.

The main CDO features are:
e More than 700 operators available
e Modular design and easily extendable with new operators
e Very simple UNIX command line interface
e A dataset can be processed by several operators, without storing the interim results in files
o Most operators handle datasets with missing values
e Fast processing of large datasets
e Support of many different grid types
o Tested on many UNIX/Linux systems, Cygwin, and MacOS-X

Latest pdf documentation be found here.

1.1. Installation

CDO is supported in different operative systems such as Unix, macOS and Windows. This section describes
how to install CDO in those platforms. More examples are found on the main website (https://code.
mpimet.mpg.de/projects/cdo/wiki)

1.1.1. Unix

1.1.1.1. Prebuilt CDO packages

Prebuilt CDO versions are available in online Unix repositories, and you can install them by typing on the
Unix terminal

apt-get install cdo

Note that prebuilt libraries do not offer the most recent version, and their version might vary with the
Unix system (see table below). It is recommended to build from the source or Conda environment for an
updated version or a customised setting.

https://www.mpimet.mpg.de/
https://www.unidata.ucar.edu/software/netcdf/conventions.html
https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf
https://code.mpimet.mpg.de/projects/cdo/wiki
https://code.mpimet.mpg.de/projects/cdo/wiki

Installation

Introduction

Unix OS CDO Version
11 (Bullseye) 1.9.10-1
Debian 10 (Buster) 1.9.6-1
Sid 2.0.6-2
FreeBSD 12 2.0.6
12 2.0.6
Leap 15.3 2.0.6
openSUSE Tumbleweed 2.0.6-1
18.04 LTS 1.9.3
Ubuntu 20.04 LTS 1.9.9
22.04 LTS 2.0.4-1

1.1.1.2. Building from sources
CDO uses the GNU configure and build system for compilation. The only requirement is a working ISO
C++420 and C11 compiler.

First go to the download page (https://code.mpimet.mpg.de/projects/cdo) to get the latest distribu-
tion, if you do not have it yet.

To take full advantage of CDO features the following additional libraries should be installed:

o Unidata NetCDF library (https://www.unidata.ucar.edu/software/netcdf) version 4.3.3 or higher.
This library is needed to process NetCDF [NetCDF] files with CDO.

o ECMWF ecCodes library (https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home) ver-
sion 2.3.0 or higher. This library is needed to process GRIB2 files with CDO.

o HDF5 szip library (https://www.hdfgroup.org/doc_resource/SZIP) version 2.1 or higher.
This library is needed to process szip compressed GRIB [GRIB] files with CDO.

o HDFS5 library (https://www.hdfgroup.org) version 1.6 or higher.
This library is needed to import CM-SAF [CM-SAF| HDF5 files with the CDO operator im-
port__cmsaf.

o PROJ library (https://proj.org) version 5.0 or higher.
This library is needed to convert Sinusoidal and Lambert Azimuthal Equal Area coordinates to
geographic coordinates, for e.g. remapping.

o Magics library (https://software.ecmwf.int/wiki/display/MAGP/Magics) version 2.18 or higher.
This library is needed to create contour, vector and graph plots with CDO.

Compilation

Compilation is done by performing the following steps:
1. Unpack the archive, if you haven’t done that yet:

gunzip cdo-$VERSION.tar.gz
tar xf cdo-$VERSION.tar
cd cdo-$VERSION

uncompress the archive
unpack it

2. Run the configure script:
./configure
o Optionaly with NetCDF [NetCDF] support:
./configure --with-netcdf=<NetCDF root directory>

e and with ecCodes:

https://code.mpimet.mpg.de/projects/cdo
https://www.unidata.ucar.edu/software/netcdf
https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home
https://www.hdfgroup.org/doc_resource/SZIP
https://www.hdfgroup.org
https://proj.org
https://software.ecmwf.int/wiki/display/MAGP/Magics

Introduction Installation

./configure --with-eccodes=<ecCodes root directory>
For an overview of other configuration options use
./configure --help
3. Compile the program by running make:
make

The program should compile without problems and the binary (cdo) should be available in the src
directory of the distribution.

Installation

After the compilation of the source code do a make install, possibly as root if the destination
permissions require that.

make install

The binary is installed into the directory <prefix>/bin. <prefix> defaults to /usr/local but
can be changed with the --prefix option of the configure script.

Alternatively, you can also copy the binary from the src directory manually to some bin directory
in your search path.

1.1.1.3. Conda

Conda is an open-source package manager and environment management system for various languages
(Python, R, etc.). Conda is installed via Anaconda or Miniconda. Unlike Anaconda, miniconda is a
lightweight conda distribution. They can be dowloaded from the main conda Website (https://conda.
io/projects/conda/en/latest/user-guide/install/linux.html) or on the terminal

and

wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
bash Anaconda3-2021.11-Linux-x86_64.sh
source ~/.bashrc

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh

Upon setting your conda environment, you can install CDO using conda

1.1.

conda install cdo
conda install python-cdo

2. MacOS

Among the MacOS package managers, CDO can be installed from Homebrew and Macports. The instal-
lation via Homebrew is straight forward process on the terminal

brew install cdo

Similarly, Macports

port install cdo

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

Usage Introduction

In contrast to Homebrew, Macport allows you to enable GRIB2, szip compression and Magics++ graphic
in CDO installation.

port install cdo +grib_api +magicspp +szip
In addition, you could also set CDO via Conda as Unix. You can follow this tutorial to install anaconda
or miniconda in your computer (https://conda.io/projects/conda/en/latest/user-guide/install/

macos.html). Then, you can install cdo by

conda install -c conda-forge cdo

1.1.3. Windows

Currently, CDO is not supported in Windows system and the binary is not available in the windows conda
repository. Therefore, CDO needs to be set in a virtual environment. Here, it covers the installation of
CDO using Windows Subsystem Linux (WSL) and virtual machines.

1.1.3.1. wsSL
WSL emulates Unix in your Windows system. Then, you can install Unix libraries and software such
as CDO or the linux conda distribution in your computer. Also, it allows you to directly share your

files between your Windows and the WSL environment. However, more complex functions that require a
graphic interface are not allowed.

In Windows 10 or newer, WSL can be readily set in your cmd by typing
wsl —-install

This command will install, by default, Ubuntu 20.04 in WSL2. You could also choose a different system
from this list.

wsl -1 -o
Then, you can install your WSL environment as

wsl -—-install -d NAME

1.1.3.2. Virtual machine
Virtual machines can emulate different operative systems in your computer. Virtual machines are guest
computers mounted inside your host computer. You can set a Linux distribution in your Windows device

in this particular case. The advantages of Virtual machines to WSL are the graphical interface and the
fully operational Linux system. You can follow any tutorial on the internet such as this one

https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#
1-overview

Finally, you can install CDO following any method listed in the section 1.1.1.

1.2. Usage

This section descibes how to use CDQ. The syntax is:

cdo [Options] Operatorl [-Operator2 [-OperatorN]]

10

https://code.mpimet.mpg.de/projects/cdo/wiki/MacOS_Platform
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview

Introduction Usage

1.2.1. Options

All options have to be placed before the first operator. The following options are available for all operators:

-a Generate an absolute time axis.
-b <nbits> Set the number of bits for the output precision. The valid precisions depend
on the file format:
<format> <nbits>
grbl, grb2 P1 - P24
ncl, nc2, ncd, ncdc, nch | I8/116/132/F32/F64
nc4, ncé4c, nch U8/U16/U32
grb2, srv, ext, ieg F32/F64

For srv, ext and ieg format the letter L or B can be added to set the byteorder
to Little or Big endian.

--cmor CMOR conform NetCDF output.

-C, --color Colorized output messages.

--double Using double precision floats for data in memory.
--eccodes Use ecCodes to decode/encode GRIB1 messages.

--filter <filterspec>
NetCDF4 filter specification.

-f <format> Set the output file format. The valid file formats are:
File format <format>
GRIB version 1 grbl/grb
GRIB version 2 grb2
NetCDF nci
NetCDF version 2 (64-bit offset) | nc2/nc
NetCDF-4 (HDF5) ncd
NetCDF-4 classic ncéc
NetCDF version 5 (64-bit data) | ncb
SERVICE STV
EXTRA ext
IEG ieg

GRIB2 is only available if CDO was compiled with ecCodes support and all
NetCDF file types are only available if CDO was compiled with NetCDF support!

-g <grid> Define the default grid description by name or from file (see chapter 1.3 on page 19).
Available grid names are: global_<DXY>, zonal_<DY>, r<NX>x<NY>, lon=<LON>/lat=<LAT>,
F<N>, gme<NI>, hpz<Z00M>

-h, --help Help information for the operators.

--no__history Do not append to NetCDF history global attribute.

--netcdf hdr_pad, --hdr__pad, --header pad <nbr>
Pad NetCDF output header with nbr bytes.

-k <chunktype> NetCDF4 chunk type: auto, grid or lines.

-L Lock I/O (sequential access).
-m <missval> Set the missing value of non NetCDF files (default: -9e+33).
-0 Overwrite existing output file, if checked.
Existing output file is checked only for: ens<STAT>, merge, mergetime
--operators List of all operators.
-P <nthreads> Set number of OpenMP threads (Only available if OpenMP support was compiled in).
--pedantic Warnings count as errors.
--percentile <method>
Methods: nrank, nist, rtype8, <NumPy method (linear|lower|higher|nearest|...)>
--reduce dim Reduce NetCDF dimensions.
-R, --regular Convert GRIB1 data from global reduced to regular Gaussian grid (only with cgribex lib).
-r Generate a relative time axis.
-S Create an extra output stream for the module TIMSTAT. This stream contains

11

Usage Introduction

the number of non missing values for each output period.

-s, --silent Silent mode.

--shuffle Specify shuffling of variable data bytes before compression (NetCDF).

--single Using single precision floats for data in memory.

--sortname Alphanumeric sorting of NetCDF parameter names.

-t <partab> Set the GRIBI1 (cgribex) default parameter table name or file (see chapter 1.6 on page 25).

Predefined tables are: echam4 echamb echam6 mpioml ecmwf remo
--timestat _date <srcdate>
Target timestamp (temporal statistics): first, middle, midhigh or last source timestep.

-V, --version Print the version number.
-v, —-verbose Print extra details for some operators.
-w Disable warning messages.
--worker <num> Number of worker to decode/decompress GRIB records.
-Z aec AEC compression of GRIB1 records.
jpeg JPEG compression of GRIB2 records.
zip[_1-9] Deflate compression of NetCDF4 variables.
zstd[1-19] Zstandard compression of NetCDF4 variables.

1.2.2. Environment variables

There are some environment variables which influence the behavior of CDO. An incomplete list can be
found in Appendix A.

Here is an example to set the envrionment variable CDO__RESET HISTORY for different shells:

Bourne shell (sh): CDO_RESET_HISTORY=1 ; export CDO_RESET_HISTORY
Korn shell (ksh): export CDO_RESET_HISTORY=1
C shell (csh): setenv CDO RESET HISTORY 1

1.2.3. Operators

There are more than 700 operators available. A detailed description of all operators can be found in the
Reference Manual section.

1.2.4. Parallelized operators

Some of the CDO operators are shared memory parallelized with OpenMP. An OpenMP-enabled C compiler
is needed to use this feature. Users may request a specific number of OpenMP threads nthreads with the
’ -P’ switch.

Here is an example to distribute the bilinear interpolation on 8 OpenMP threads:

cdo -P 8 remapbil,targetgrid infile outfile

Many CDO operators are I/O-bound. This means most of the time is spend in reading and writing the
data. Only compute intensive CDO operators are parallelized. An incomplete list of OpenMP parallelized
operators can be found in Appendix B.

1.2.5. Operator parameter

Some operators need one or more parameter. A list of parameter is indicated by the seperator ',

« STRING

String parameters require quotes if the string contains blanks or other characters interpreted by the
shell. The following command select variables with the name pressure and tsurf:

12

Introduction Usage

cdo selvar,pressure,tsurf infile outfile
« FLOAT

Floating point number in any representation. The following command sets the range between 0 and
273.15 of all fields to missing value:

cdo setrtomiss,0,273.15 infile outfile
« BOOL

Boolean parameter in the following representation TRUE/FALSE, T/F or 0/1. To disable the weight-
ing by grid cell area in the calculation of a field mean, use:

cdo fldmean,weights=FALSE infile outfile
« INTEGER

A range of integer parameter can be specified by first/last[/inc]. To select the days 5, 6, 7, 8 and 9
use:

cdo selday,5/9 infile outfile
The result is the same as:

cdo selday,5,6,7,8,9 infile outfile

1.2.6. Operator chaining

Operator chaining allows to combine two or more operators on the command line into a single CDO call.
This allows the creation of complex operations out of more simple ones: reductions over several dimensions,
file merges and all kinds of analysis processes. All operators with a fixed number of input streams and
one output stream can pass the result directly to an other operator. For differentiation between files and
operators all operators must be written with a prepended "-" when chaining.

cdo -monmean -add -mulc,2.0 infilel -daymean infile2 outfile (CDO example call)

Here monmean will have the output of add while add takes the output of mulc,2.0 and daymean. infilel
and infile?2 are inputs for their predecessor. When mixing operators with an arbitrary number of input
streams extra care needs to be taken. The following examples illustrates why.

1. cdo info -timavg infilel infile2
2. cdo info -timavg infile?

3. cdo timavg infilel tmpfile
cdo info tmpfile infile2
rm tmpfile

All three examples produce identical results. The time average will be computed only on the first input file.

Note(1): In section 1.3.2 we introduce argument groups which will make this a lot easier and less er-
ror prone.

Note(2): Operator chaining is implemented over POSIX Threads (pthreads). Therefore this CDO feature
is not available on operating systems without POSIX Threads support!

1.2.7. Chaining Benefits

Combining operators can have several benefits. The most obvious is a performance increase through
reducing disk I/0O:

cdo sub -dayavg infile2 -timavg infilel outfile

13

Advanced Usage Introduction

instead of

cdo timavg infilel tmpl
cdo dayavg infile2 tmp2
cdo sub tmp2 tmpl outfile
rm tmpl tmp2

Especially with large input files the reading and writing of intermediate files can have a big influence on
the overall performance.
A second aspect is the execution of operators: Limited by the algorythms potentially all operators of a
chain can run in parallel.

1.3. Advanced Usage

In this section we will introduce advanced features of CDQ. These include operator grouping which allows
to write more complex CDO calls and the apply keyword which allows to shorten calls that need an operator
to be executed on multiple files as well as wildcards which allow to search paths for file signatures. These
features have several restrictions and follow rules that depend on the input/output properties. These
required properties of operators can be investigated with the following commands which will output a list
of operators that have selected properties:

cdo --attribs [arbitrary/filesOnly/onlyFirst/noOutput/obase]
e arbitrary describes all operators where the number of inputs is not defined.

e filesOnly are operators that can have other operators as input.

o onlyFirst shows which operators can only be at the most left position of the polish notation argument
chain.

o noQutput are all operators that do not print to any file (e.g info)

e obase Here obase describes an operator that does not use the output argument as file but e.g as a file
name base (output base). This is almost exclusivly used for operators the split input files.

cdo -splithour baseName_
could result in: baseName_1 baseName_2 ... baseName_ N

For checking a single or multiple operator directly the following usage of --attribs can be used:

cdo --attribs operatorName

1.3.1. Wildcards

Wildcards are a standard feature of command line interpreters (shells) on many operating systems. They
are placeholder characters used in file paths that are expanded by the interpreter into file lists. For further
information the Advance Bash Scripting Guide is a valuable source of information. Handling of input is
a central issue for CDO and in some circumstances it is not enough to use the wildcards from the shell.
That’s why CDO can handle them on its own.

all files 2020-2-01.txt 2020-2-11.txt 2020-2-15.txt 2020-3-01.txt 2020-3-02.txt
2020-3-12.txt 2020-3-13.txt 2020-3-15.txt 2021.grb 2022.grb
wildcard filelist results

2020-3% and 2020-3-77.txt | 2020-3-01.txt 2020-3-02.txt 2020-3-12.txt 2020-3-13.txt 2020-3-15.txt
2020-3-71.txt 2020-3-01.txt
*grb 2021.grb 2020.grb

Use single quotes if the input stream names matched to a single wildcard expression. In this case CDO
will do the pattern matching and the output can be combined with other operators. Here is an example
for this feature:

14

https://tldp.org/LDP/abs/html

Introduction Advanced Usage

cdo timavg -select,name=temperature ’infile?’ outfile

In earlier versions of CDO this was necessary to have the right files parsed to the right operator. Newer
version support this with the argument grouping feature (see 1.3.2). We advice the use of the grouping
mechanism instead of the single quoted wildcards since this feature could be deprecated in future versions.

Note: Wildcard expansion is not available on operating systems without the glob() function!

1.3.2. Argument Groups

In section 1.2.6 we described that it is not possible to chain operators with an arbitrary number of inputs.
In this section we want to show how this can be achieved through the use of operator grouping with angled
brackets []. Using these brackets CDO can assigned the inputs to their corresponding operators during
the execution of the command line. The ability to write operator combination in a parenthis-free way is
partly given up in favor of allowing operators with arbitrary number of inputs. This allows a much more
compact way to handle large number of input files.

The following example shows an example which we will transform from a non-working solution to a working
one.

cdo -infon -div -fldmean -cat infileA —-mulc,2.0 infileB -fldmax infileC
This example will throw the following error:

cdo (Abort):
—infon -div -fldmean -cat infileA -mulc,2.0 infileB —-fldmax infileC
~ Operator cannot be assigned.

Reason:
Multiple variable input operators used.
Use subgroups via [] to clarify relations (help: --argument_groups).

The error is raised by the operator div. This operator needs two input streams and one output stream,
but the cat operator has claimed all possible streams on its right hand side as input because it accepts an
arbitrary number of inputs. Hence it didn’t leave anything for the remaining input or output streams of
div. For this we can declare a group which will be passed to the operator left of the group.

cdo -infon -div -fldmean -cat [infileA -mulc,2.0 infileB] -fldmax infileC
For full flexibility it is possible to have groups inside groups:

cdo -infon -div -fldmean -cat [infileA infileB -merge [infileCl infileC2]] -fldmax infileD

1.3.3. Applying a operator or chain to multiple inputs

When working with medium or large number of similar files there is a common problem of a processing
step (often a reduction) which needs to be performed on all of them before a more specific analysis can be
applied. Usually this can be done in two ways: One option is to use a merge operator to glue everything
together and chain the reduction step after it. The second option is to write a for-loop over all inputs
which perform the basic processing on each of the files separately and call a merge operator one the results.
Unfortunately both options have side-effects: The first one needs a lot of memory because all files are read
in completely and reduced afterwards while the latter one creates a lot of temporary files. Both memory
and disk IO can be bottlenecks and should be avoided. In CDO there exist two approaches to circumvent
most drawbacks. The first is to use the more recent ’apply’ feature using the [to_be_applied : applied_ to
| syntax, the second is an older approach and is only listed and documented for completeness sake. We
highly recommend the more recent approach!

15

Advanced Usage Introduction

1.3.4. Apply with [:] notation

With the [to_be_applied : applied_to | syntax it is possible to prepend multiple inputs or chains with
another chain. For example:

-mergetime [-selname,tsurf : *.grb]
would merge all grib files in the folder after selecting the variable tsurf from them.
In general the to_be applied is applied in parallel to all related input streams (applied_to) before all

streams are passed to operator next in the chain.
The following is an example with three input files:

cdo -mergetime [-selname,tsurf : infilel infile2 infile3] outfile

This would result in CDO executing as if the following was used:

cdo -mergetime -selname,tsurf infilel -selname,tsurf infile2 -selname,tsurf infile3 outfile

Figure 1.1.: Usage and result of [:] notation

This notation is especially useful when combined with wildcards. The previous example can be shortened
further.

cdo -mergetime [-selname,tsurf : infile?] outfile

As shown this feature allows to simplify commands with medium amount of files and to move reductions
further back. This can also have a positive impact on the performance.

An example where performance can take a hit.

cdo -yearmean -selname,tsurf -mergetime [f1 ... £40]

An improved but ugly to write example.

cdo -yearmean -mergetime [-selname,tsurf fl -selname,tsurf f2 ... -selname,tsurf f40]

Apply saves the day. And creates the call above with much less typing.

cdo -yearmean -mergetime [-selname,tsurf : f1 ... £f40 1]

Figure 1.2.: [: | notation simplifies command and execution

Further this notation allows to prepend full cdo chains with other operators:

cdo -info -mergetime [-selname,tsurf : -addc,l -mul f1 f2 -addc,4 £3]

Resolving internally to the following command:

info -mergetime -selname,tsurf [-addc,l -mul f1 f2 -selvar,tsurf -addc,4 £3]

16

Introduction Advanced Usage

1.3.5. Apply Keyword (LEGACY)

Originally the apply keyword was introduced for that purpose. We want to repeat that this is an older
method and should not be used in newly written CDO commands! It can be used as an operator, but it
needs at least one operator as a parameter, which is applied in parallel to all related input streams in a
parallel way before all streams are passed to operator next in the chain.

The following is an example with three input files:

cdo -mergetime -apply,-selname,tsurf [infilel infile2 infile3] outfile

would result in:

cdo -mergetime -selname,tsurf infilel -selname,tsurf infile2 -selname,tsurf infile3 outfile

Figure 1.3.: Usage and result of apply keyword

Apply is especially useful when combined with wildcards. The previous example can be shortened further.

cdo -mergetime -apply,-selname,tsurf [infile?] outfile

As shown this feature allows to simplify commands with medium amount of files and to move reductions
further back. This can also have a positive impact on the performance.

An example where performance can take a hit.

cdo -yearmean -selname,tsurf -mergetime [f1 ... 40]

An improved but ugly to write example.

cdo -yearmean -mergetime [-selname,tsurf f1 -selname,tsurf f2 ... -selname,tsurf f40]

Apply saves the day. And creates the call above with much less typing.

cdo -yearmean -mergetime [-apply,-selname,tsurf [£f1 ... £40]]

Figure 1.4.: Apply keyword simplifies command and execution

In the example in figure 1.4 the resulting call will dramatically save process interaction as well as execution
times since the reduction (selname,tsurf) is applied on the files first. That means that the mergetime
operator will receive the reduced files and the operations for merging the whole data is saved. For other
CDO calls further improvements can be made by adding more arguments to apply (1.5)

A less performant example.

cdo -aReduction -anotherReduction -selname,tsurf -mergetime [f1 ... £40]

cdo -mergetime -apply,"-aReduction -anotherReduction -selname,tsurf" [f1 ... f40]

Figure 1.5.: Multi argument apply

17

Memory Requirements Introduction

Restrictions: While the apply keyword can be extremely helpful it has several restrictions (for now!).
e Apply inputs can only be files, wildcards and operators that have 0 inputs and 1 output.
e Apply can not be used as the first CDQO operator.
e Apply arguments can only be operators with 1 input and 1 output.

¢ Grouping inside the Apply argument or input is not allowed.

1.4. Memory Requirements

This section roughly describes the memory requirements of CDO. CDO tries to use as little memory as
possible. The smallest unit that is read by all operators is a horizontal field. The required memory depends
mainly on the used operators, the data format, the data type and the size of the fields.

The operators have partly very different memory requirements. Many CDO modules like FLDSTAT process
one horizontal field at a time. Memory-intensive modules such as ENSSTAT and TIMSTAT require all
fields of a time step to be held in memory. Of course, the memory requirements of each operator add
up when they are combined. Some operators are parallelized with OpenMP. In multi-threaded mode (see
option -P) the memory requirement can increase for these operators. This increase grows with the number
of threads used.

The data type determines the number of bytes per value. Single precision floating point data occupies
4 bytes per value. All other data types are read as double precision floats and thus occupy 8 bytes per
value. With the CDO option --single all data is read as single precision floats. This can reduce the memory
requirement by a factor of 2.

1.5. Horizontal grids

Physical quantities of climate models are typically stored on a horizonal grid. CDQO supports structured
grids like regular lon/lat or curvilinear grids and also unstructured grids.

1.5.1. Grid area weights

One single point of a horizontal grid represents the mean of a grid cell. These grid cells are typically of
different sizes, because the grid points are of varying distance.

Area weights are individual weights for each grid cell. They are needed to compute the area weighted
mean or variance of a set of grid cells (e.g. fldmean - the mean value of all grid cells). In CDO the area
weights are derived from the grid cell area. If the cell area is not available then it will be computed from
the geographical coordinates via spherical triangles. This is only possible if the geographical coordinates of
the grid cell corners are available or derivable. Otherwise CDO gives a warning message and uses constant
area weights for all grid cells.

The cell area is read automatically from a NetCDF input file if a variable has the corresponding “cell__measures”
attribute, e.g.:

var:cell_measures = "area: cell__area' ;

If the computed cell area is not desired then the CDO operator setgridarea can be used to set or overwrite
the grid cell area.

18

Introduction Horizontal grids

1.5.2. Grid description

In the following situations it is necessary to give a description of a horizontal grid:
o Changing the grid description (operator: setgrid)
o Horizontal interpolation (all remapping operators)
o Generating of variables (operator: const, random)

As now described, there are several possibilities to define a horizontal grid.

1.5.2.1. Predefined grids

Predefined grids are available for global regular, gaussian, HEALPix or icosahedral-hexagonal GME grids.

Global regular grid: global_<DXY>

global_<DXY> defines a global regular lon/lat grid. The grid increment <DXY> can be chosen arbitrarily.
The longitudes start at <DXY>/2 - 180° and the latitudes start at <DXY>/2 - 90°.

Regional regular grid: dcw:<CountryCode>[_<DXY>]

dcw:<CountryCode>[_<DXY>] defines a regional regular lon/lat grid from the country code. The default
value of the optional grid increment <DXY> is 0.1 degree. The ISO two-letter country codes can be found
on https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2. To define a state, append the state code to the
country code, e.g. USAK for Alaska. For the coordinates of a country CDO uses the DCW (Digital Chart
of the World) dataset from GMT. This dataset must be installed on the system and the environment
variable DIR_DCW must point to it.

Zonal latitudes: zonal_<DY>

zonal_<DY> defines a grid with zonal latitudes only. The latitude increment <DY> can be chosen arbitrarily.
The latitudes start at <DY>/2 - 90°. The boundaries of each latitude are also generated. The number of
longitudes is 1. A grid description of this type is needed to calculate the zonal mean (zonmean) for data
on an unstructured grid.

Global regular grid: r<NX>x<NY>

T<NX>x<NY> defines a global regular lon/lat grid. The number of the longitudes <NX> and the latitudes
<NY> can be chosen arbitrarily. The longitudes start at 0° with an increment of (360/<NX>)°. The latitudes
go from south to north with an increment of (180/<NY>)°.

One grid point: lon=<LON>/lat=<LAT>

lon=<LON>/lat=<LAT> defines a lon/lat grid with only one grid point.

Full regular Gaussian grid: F<N>

F<N> defines a global regular Gaussian grid. N specifies the number of latitudes lines between the Pole and
the Equator. The total number of latitudes and longitues is: nlat = N *2; nlon = nlat 2. The longitudes
start at 0° with an increment of (360/nlon)°. The gaussian latitudes go from north to south.

19

https://www.soest.hawaii.edu/pwessel/dcw/

Horizontal grids Introduction

Global icosahedral-hexagonal GME grid: gme<NI>

gme<NI> defines a global icosahedral-hexagonal GME grid. NI specifies the number of intervals on a main
triangle side.

HEALPix grid: hp<NSIDE>[_<ORDER>]

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere.
hp<NSIDE>[_<ORDER>] defines the parameter of a global HEALPix grid. The NSIDE parameter controls the
resolution of the pixellization. It is the number of pixels on the side of each of the 12 top-level HEALPix
pixels. The total number of grid pixels is 12*NSIDE*NSIDE. NSIDE=1 generates the 12 (H=4, K=3) equal
sized top-level HEALPix pixels. ORDER sets the index ordering convention of the pixels, available are nested
(default) or ring ordering. A shortcut for hp<NSIDE>_nested is hpz<Z0OM>. Z0OOM is the zoom level and
the relation to NSIDE is zoom = logs(nside).

If the geographical coordinates are required in CDO, they are calculated from the HEALPix parameters.
For this calculation the astropy-healpix C library is used.

1.5.2.2. Grids from data files

You can use the grid description from an other datafile. The format of the datafile and the grid of the data
field must be supported by CDO. Use the operator ’sinfo’ to get short informations about your variables
and the grids. If there are more then one grid in the datafile the grid description of the first variable will
be used. Add the extension :N to the name of the datafile to select grid number N.

1.5.2.3. SCRIP grids

SCRIP (Spherical Coordinate Remapping and Interpolation Package) uses a common grid description for
curvilinear and unstructured grids. For more information about the convention see [SCRIP]. This grid
description is stored in NetCDF. Therefor it is only available if CDO was compiled with NetCDF support!

SCRIP grid description example of a curvilinear MPIOM [MPIOM] GROB3 grid (only the NetCDF header):

netcdf grob3s {

dimensions:
grid_size = 12120 ;
grid__corners = 4 ;

grid_rank = 2 ;
variables:
int grid dims(grid rank) ;
double grid_center_lat(grid_size) ;

grid__center_lat:units = "degrees" ;
grid__center__lat:bounds = "grid__corner_lat" ;
double grid__center_lon(grid_size) ;
grid_ center_lon:units = "degrees" ;
grid__center__lon:bounds = "grid_corner_lon" ;
int grid imask(grid_size) ;
grid__imask:units = "unitless" ;
grid__imask:coordinates = "grid_center_lon grid_center_lat" ;
double grid_corner_lat(grid_size, grid_ corners) ;
grid__corner_lat:units = "degrees" ;
double grid corner_lon(grid_ size, grid corners) ;
grid__corner_lon:units = "degrees" ;

// global attributes:
:title = "grob3s"
}

20

https://github.com/astropy/astropy-healpix

Introduction

Horizontal grids

1.5.2.4. CDO grids

All supported grids can also be described with the CDO grid description. The following keywords can be
used to describe a grid:

Keyword Datatype Description

gridtype STRING Type of the grid (gaussian, lonlat, curvilinear, unstructured).
gridsize INTEGER Size of the grid.

xsize INTEGER Size in x direction (number of longitudes).

ysize INTEGER Size in y direction (number of latitudes).

xvals FLOAT ARRAY X values of the grid cell center.

yvals FLOAT ARRAY Y values of the grid cell center.

nvertex INTEGER Number of the vertices for all grid cells.

xbounds FLOAT ARRAY X bounds of each gridbox.

ybounds FLOAT ARRAY Y bounds of each gridbox.

xfirst, xinc
yfirst, yinc

xunits
yunits

FLOAT, FLOAT
FLOAT, FLOAT

STRING
STRING

Macros to define xvals with a constant increment,
xfirst is the x value of the first grid cell center.
Macros to define yvals with a constant increment,
yfirst is the y value of the first grid cell center.

units of the x axis
units of the y axis

Which keywords are necessary depends on the gridtype. The following table gives an overview of the
default values or the size with respect to the different grid types.

gridtype lonlat gaussian projection | curvilinear | unstructured
gridsize xsize*ysize | xsize*ysize | xsize*ysize | xsize*ysize ncell
xsize nlon nlon nx nlon gridsize
ysize nlat nlat ny nlat gridsize
xvals xsize xsize xsize gridsize gridsize
yvals ysize ysize ysize gridsize gridsize
nvertex 2 2 2 4 nv
xbounds 2*xsize 2*xsize 2*xsize 4*gridsize | nv*gridsize
ybounds 2*ysize 2*ysize 2*xsize 4*gridsize | nv*gridsize
xunits degrees degrees m degrees degrees
yunits degrees degrees m degrees degrees

The keywords nvertex, xbounds and ybounds are optional if area weights are not needed. The grid cell
corners xbounds and ybounds have to rotate counterclockwise.

CDO grid description example of a T21 gaussian grid:

gridtype
xsize
ysize
xfirst
xinc
yvals

= gaussian

= 64

= 32

= 0

= 5.625

= 85.76 80.27 74.75 69.21 63.68 58.14
41.53 36.00 30.46 24.92 19.38 13.84
—2.77 —8.31 —13.84 —19.38 —24.92 —30.46
—47.07 —52.61 —58.14 —63.68 —69.21 —74.75

52.61 47.07

8.31 2.77
—36.00 —41.53
—80.27 —85.76

CDO grid description example of a global regular grid with 60x30 points:

gridtype
xsize
ysize

lonlat
60
30

21

Horizontal grids Introduction

xfirst = —177
xinc = 6
yfirst = 87
yinc = 6

The description for a projection is somewhat more complicated. Use the first section to describe the
coordinates of the projection with the above keywords. Add the keyword grid__mapping_name to
descibe the mapping between the given coordinates and the true latitude and longitude coordinates.
grid__mapping_name takes a string value that contains the name of the projection. A list of attributes
can be added to define the mapping. The name of the attributes depend on the projection. The valid
names of the projection and there attributes follow the NetCDF CF-Convention.

CDO supports the special grid mapping attribute proj__params. These parameter will be passed directly
to the PROJ library to generate the geographic coordinates if needed.

The geographic coordinates of the following projections can be generated without the attribute proj__params,
if all other attributes are available:

o rotated_ latitude_ longitude
¢ lambert_ _conformal_ conic
e lambert_ azimuthal_equal_ area
¢ sinusoidal
e polar__stereographic
It is recommend to set the attribute proj__params also for the above projections to make sure all PROJ

parameter are set correctly.

Here is an example of a CDO grid description using the attribute proj__params to define the PROJ
parameter of a polar stereographic projection:

gridtype = projection

xsize = 11

ysize =11

xunits = "meter"

yunits = "meter"

xfirst = —638000

xinc = 150

yfirst = —3349350

yinc = 150

grid__mapping = crs

grid_mapping name = polar_stereographic
proj__params = "+proj=stere +lon_0=—45 +lat_ts=70 +lat_ 0=90 4+x_0=0 +y_0=0"

The result is the same as using the CF conform Grid Mapping Attributes:

gridtype = projection

xsize =11

ysize =11

xunits = "meter"

yunits = "meter"

xfirst = —638000

xinc = 150

yfirst = —3349350

yinc = 150

grid_mapping = crs

grid_mapping name = polar_stereographic
straight_vertical longitude_from_pole = —45.
standard_ parallel = 70.
latitude_ of projection_ origin = 90.
false__easting = 0.

false_northing = 0.

CDO grid description example of a regional rotated lon/lat grid:

22

Introduction Z-axis description

gridtype = projection

xsize = 81

ysize = 91

xunits = "degrees"

yunits = "degrees"

xfirst = —19.5

xinc = 0.5

yfirst = —25.0

yinc = 0.5

grid_mapping_ name = rotated__latitude_longitude
grid_north_pole_longitude = —170

grid_north_pole_latitude = 32.5

Example CDQO descriptions of a curvilinear and an unstructured grid can be found in Appendix D.

1.5.3. ICON - Grid File Server

The geographic coordinates of the ICON model are located on an unstructured grid. This grid is stored in
a separate grid file independent of the model data. The grid files are made available to the general public
via a file server. Furthermore, these grid files are located at DKRZ under /pool/data/ICON/grids.

With the CDO function setgrid,<gridfile> this grid information can be added to the data if needed.
Here is an example:

cdo sellonlatbox,-20,60,10,70 -setgrid,<path_to_gridfile> icondatafile result

ICON model data in NetCDF format contains the global attribute grid_file_uri. This attribute contains
a link to the appropriate grid file on the ICON grid file server. If the global attribute grid_file_uri is
present and valid, the grid information can be added automatically. The setgrid function is then no longer
required. The environment variable CDO_DOWNLOAD_PATH can be used to select a directory for storing the
grid file. If this environment variable is set, the grid file will be automatically downloaded from the grid file
server to this directory if needed. If the grid file already exists in the current directory, the environment
variable does not need to be set.

If the grid files are available locally, like at DKRZ, they do not need to be fetched from the grid file server.
Use the environment variable CDO_ICON_GRIDS to set the root directory of the ICON grids. Here is an
example for the ICON grids at DKRZ:

CDO_ICON_GRIDS=/pool/data/ICON

1.6. Z-axis description

Sometimes it is necessary to change the description of a z-axis. This can be done with the operator setzaxis.
This operator needs an ASCII formatted file with the description of the z-axis. The following keywords
can be used to describe a z-axis:

Keyword Datatype Description
zaxistype STRING type of the z-axis
size INTEGER number of levels
levels FLOAT ARRAY values of the levels

lbounds FLOAT ARRAY lower level bounds

ubounds FLOAT ARRAY upper level bounds

vctsize INTEGER number of vertical coordinate parameters
vct FLOAT ARRAY vertical coordinate table

The keywords lbounds and ubounds are optional. vctsize and vct are only necessary to define hybrid
model levels.

23

Time axis Introduction

Available z-axis types:

Z-axis type Description Units
surface Surface

pressure Pressure level pascal
hybrid Hybrid model level

height Height above ground meter
depth__below__sea Depth below sea level meter
depth__below_ land Depth below land surface centimeter
isentropic Isentropic (theta) level kelvin

Z-axis description example for pressure levels 100, 200, 500, 850 and 1000 hPa:

zaXistype = pressure
size =5
levels = 10000 20000 50000 85000 100000

Z-axis description example for ECHAMS L.19 hybrid model levels:

zaxistype = hybrid

size =19

levels =123456789 10 11 12 13 14 15 16 17 18 19

vctsize = 40

vet = 0 2000 4000 6046.10938 8267.92578 10609.5117 12851.1016 14698.5

15861.125 16116.2383 15356.9258 13621.4609 11101.5625 8127.14453
5125.14062 2549.96875 783.195068 0 0 O

0 0 0 0.000338993268 0.00335718691 0.0130700432 0.0340771675
0.0706498027 0.12591666 0.201195419 0.295519829 0.405408859
0.524931908 0.646107674 0.759697914 0.856437683 0.928747177
0.972985268 0.992281914 1

Note that the vctsize is twice the number of levels plus two and the vertical coordinate table must be
specified for the level interfaces.

1.7. Time axis

A time axis describes the time for every timestep. Two time axis types are available: absolute time and
relative time axis. CDO tries to maintain the actual type of the time axis for all operators.

1.7.1. Absolute time

An absolute time axis has the current time to each time step. It can be used without knowledge of the
calendar. This is preferably used by climate models. In NetCDF files the absolute time axis is represented
by the unit of the time: "day as %Y/m¥%d.%f".

1.7.2. Relative time

A relative time is the time relative to a fixed reference time. The current time results from the reference time
and the elapsed interval. The result depends on the calendar used. CDO supports the standard Gregorian,
proleptic Gregorian, 360 days, 365 days and 366 days calendars. The relative time axis is preferably used
by numerical weather prediction models. In NetCDF files the relative time axis is represented by the unit
of the time: "time-units since reference-time", e.g "days since 1989-6-15 12:00".

24

Introduction Parameter table

1.7.3. Conversion of the time

Some programs which work with NetCDF data can only process relative time axes. Therefore it may be
necessary to convert from an absolute into a relative time axis. This conversion can be done for each
operator with the CDO option -r’. To convert a relative into an absolute time axis use the CDO option

-a’.

1.8. Parameter table

A parameter table is an ASCII formated file to convert code numbers to variable names. Each variable
has one line with its code number, name and a description with optional units in a blank separated list. It
can only be used for GRIB, SERVICE, EXTRA and IEG formated files. The CDO option -t <partab>’
sets the default parameter table for all input files. Use the operator 'setpartab’ to set the parameter table
for a specific file.

Example of a CDO parameter table:

134 aps surface pressure [Pa]
141 sn snow depth [m]

147 ahfl latent heat flux [W/mx=2]
172 slm land sea mask

175 albedo surface albedo

211 siced ice depth [m]

1.9. Missing values

Missing values are data points that are missing or invalid. Such data points are treated in a different way
than valid data. Most CDO operators can handle missing values in a smart way. But if the missing value
is within the range of valid data, it can lead to incorrect results. This applies to all arithmetic operations,
but especially to logical operations when the missing value is 0 or 1.

The default missing value for GRIB, SERVICE, EXTRA and IEG files is —9.¢33. The CDO option -m
<missval>" overwrites the default missing value. In NetCDF files the variable attribute ’_ FillValue’ is
used as a missing value. The operator ’setmissval’ can be used to set a new missing value.

The CDO use of the missing value is shown in the following tables, where one table is printed for each
operation. The operations are applied to arbitrary numbers a, b, the special case 0, and the missing value
miss. For example the table named "addition" shows that the sum of an arbitrary number a and the
missing value is the missing value, and the table named "multiplication" shows that 0 multiplied by missing
value results in 0.

25

Percentile Introduction

addition b miss
a a+b miss
miss miss miss
subtraction b miss
a a—>b miss
miss miss miss
multiplication b 0 miss
a axb 0 miss

0 0 0 0
miss miss 0 miss
division b 0 miss
a a/b miss miss
0 0 miss miss
miss miss miss miss
maximum b miss

a maz(a,b) a
miss b miss
minimum b miss

a min(a,b) a
miss b miss
sum b miss

a a+b a
miss b miss

The handling of missing values by the operations "minimum" and "maximum" may be surprising, but the
definition given here is more consistent with that expected in practice. Mathematical functions (e.g. log,
sqrt, etc.) return the missing value if an argument is the missing value or an argument is out of range.

All statistical functions ignore missing values, treading them as not belonging to the sample, with the
side-effect of a reduced sample size.

1.9.1. Mean and average

An artificial distinction is made between the notions mean and average. The mean is regarded as a
statistical function, whereas the average is found simply by adding the sample members and dividing the
result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 4 3)/3 = 2, whereas the
average is (1424 miss+3)/4 = miss/4 = miss. If there are no missing values in the sample, the average
and mean are identical.

1.10. Percentile

There is no standard definition of percentile. All definitions yield to similar results when the number of
values is very large. The following percentile methods are available in CDO:

26

Introduction Regions

lEaEUit Description

method

nrank Nearest Rank method [default in CDO]

nist The primary method recommended by NIST

rtype8 R’s type=8 method

inverted_ cdf NumPy with percentile method="inverted_ cdf’ (R type=1)
averaged__inverted__cdf NumPy with percentile method="averaged inverted_ cdf’ (R type=2)
closest__observation NumPy with percentile method="closest__ observation’ (R type=3)
interpolated__inverted__cdf | NumPy with percentile method="interpolated__inverted_cdf’ (R type=4)
hazen NumPy with percentile method="hazen’ (R type=5)

weibull NumPy with percentile method="weibull’ (R type=6)

linear NumPy with percentile method='linear’ (R type=7) [default in NumPy and R]
median__unbiased NumPy with percentile method="median_ unbiased’ (R type==8)

normal unbiased NumPy with percentile method="normal_unbiased’ (R type=9)

lower NumPy with percentile method="lower’

higher NumPy with percentile method="higher’

midpoint NumPy with percentile method="midpoint’

nearest NumPy with percentile method="nearest’

The percentile method can be selected with the CDO option - -percentile. The Nearest Rank method
is the default percentile method in CDO.

The different percentile methods can lead to different results, especially for small number of data values.
Consider the ordered list {15, 20, 35, 40, 50, 55}, which contains six data values. Here is the result for the
30th, 40th, 50th, 75th and 100th percentiles of this list using the different percentile methods:

Percentile nrank | nist | rtypes N}lmPy NumPy Nl.lmPy NumPy

P linear lower higher | nearest
30th 20 21.5 23.5 27.5 20 35 35
40th 35 32 33 35 35 35 35
50th 35 37.5 37.5 37.5 35 40 40
75th 50 51.25 | 50.42 47.5 40 50 50
100th 55 55 55 55 55 55 55

1.10.1. Percentile over timesteps

The amount of data for time series can be very large. All data values need to held in memory to calculate
the percentile. The percentile over timesteps uses a histogram algorithm, to limit the amount of required
memory. The default number of histogram bins is 101. That means the histogram algorithm is used,
when the dataset has more than 101 time steps. The default can be overridden by setting the environment
variable CDO_PCTL_NBINS to a different value. The histogram algorithm is implemented only for the Nearest
Rank method.

1.11. Regions

The CDO operators maskregion and selregion can be used to mask and select regions. For this purpose,
the region needs to be defined by the user. In CDO there are two possibilities to define regions.

One possibility is to define the regions with an ASCII file. Each region is defined by a polygon. Each line
of the polygon contains the longitude and latitude coordinates of a point. A description file for regions can
contain several polygons, these must be separated by a line with the character &.

27

Regions Introduction

Here is a simple example of a polygon for a box with longitudes from 120W to 90E and latitudes from 20N
to 208S:

120 20
120 —20
270 —20
270 20

With the second option, predefined regions can be used via country codes. A country is specified with
dcw:<CountryCode>. Country codes can be combined with the plus sign.

Here is an example to select the region Spain and Portugal:

cdo selregion,dcw:ES+PT infile outfile

The ISO two-letter country codes can be found on https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2.
To define a state, append the state code to the country code, e.g. USAK for Alaska. For the coordinates
of a country CDO uses the DCW (Digital Chart of the World) dataset from GMT. This dataset must be
installed on the system and the environment variable DIR_DCW must point to it.

28

https://www.soest.hawaii.edu/pwessel/dcw/

2. Reference manual

This section gives a description of all operators. Related operators are grouped to modules. For easier
description all single input files are named infile or infilel, infile2, etc., and an arbitrary number of
input files are named infiles. All output files are named outfile or outfilel, outfile2, etc. Further
the following notion is introduced:

i(t) Timestep ¢ of infile
i(t,z) Element number z of the field at timestep ¢ of infile
o(t) Timestep ¢ of outfile

(

t,z) Element number z of the field at timestep ¢ of outfile

29

Information

Reference manual

2.1. Information

This section contains modules to print information about datasets. All operators print there results to

standard output.

Here is a short overview of all operators in this section:

info
infon
cinfo
map

sinfo
sinfon

xsinfo
xsinfop

diff
diffn

npar
nlevel
nyear
nmon
ndate
ntime
ngridpoints
ngrids

showformat
showcode
showname
showstdname
showlevel
showltype
showyear
showmon
showdate
showtime
showtimestamp
showchunkspec
showfilter

showattribute

partab
codetab
griddes
zaxisdes
vct

Dataset information listed by parameter identifier
Dataset information listed by parameter name
Compact information listed by parameter name
Dataset information and simple map

Short information listed by parameter identifier
Short information listed by parameter name

Extra short information listed by parameter name
Extra short information listed by parameter identifier

Compare two datasets listed by parameter id
Compare two datasets listed by parameter name

Number of parameters
Number of levels

Number of years

Number of months
Number of dates

Number of timesteps
Number of gridpoints
Number of horizontal grids

Show file format

Show code numbers
Show variable names
Show standard names
Show levels

Show GRIB level types
Show years

Show months

Show date information
Show time information
Show timestamp

Show chunk specification
Show filter specification

Show a global attribute or a variable attribute

Parameter table
Parameter code table
Grid description

Z-axis description
Vertical coordinate table

30

Reference manual Information

2.1.1. INFO - Information and simple statistics
Synopsis

<operator> infiles

Description

This module writes information about the structure and contents for each field of all input files to
standard output. A field is a horizontal layer of a data variable. All input files need to have the same
structure with the same variables on different timesteps. The information displayed depends on the
chosen operator.

Operators
info Dataset information listed by parameter identifier
Prints information and simple statistics for each field of all input datasets. For each field
the operator prints one line with the following elements:
e Date and Time
e Level, Gridsize and number of Missing values
e Minimum, Mean and Maximum
The mean value is computed without the use of area weights!
o Parameter identifier
infon Dataset information listed by parameter name
The same as operator info but using the name instead of the identifier to label the param-
eter.
cinfo Compact information listed by parameter name
cinfo is a compact version of infon. It prints the minimum, mean and maximum value for
each variable across all layers and time steps.
map Dataset information and simple map
Prints information, simple statistics and a map for each field of all input datasets. The
map will be printed only for fields on a regular lon/lat grid.
Example
To print information and simple statistics for each field of a dataset use:
cdo infon infile
This is an example result of a dataset with one 2D parameter over 12 timesteps:
—1 Date Time Level Size Miss : Minimum Mean Maximum : Name
1 1987—01—31 12:00:00 0 2048 1361 : 232.77 266.65 305.31 : SST
2 1987—02—28 12:00:00 0 2048 1361 : 233.64 267.11 307.15 : SST
3 1987—-03—31 12:00:00 0 2048 1361 : 225.31 267.52 307.67 : SST
4 1987—04—30 12:00:00 0 2048 1361 : 215.68 268.65 310.47 : SST
5 1987—05—31 12:00:00 0 2048 1361 : 215.78 271.53 312.49 : SST
6 1987—06—30 12:00:00 0 2048 1361 : 212.89 272.80 314.18 : SST
7 1987—07—31 12:00:00 0 2048 1361 : 209.52 274.29 316.34 : SST
8 1987—08—-31 12:00:00 0 2048 1361 : 210.48 274.41 315.83 : SST
9 1987—09—30 12:00:00 0 2048 1361 : 210.48 272.37 312.86 : SST
10 1987—10—31 12:00:00 0 2048 1361 : 219.46 270.53 309.51 : SST
11 1987—11—-30 12:00:00 0 2048 1361 : 230.98 269.85 308.61 : SST
12 1987—12—31 12:00:00 0 2048 1361 : 241.25 269.94 309.27 : SST

31

Information Reference manual

2.1.2. SINFO - Short information
Synopsis

<operator> infiles

Description

This module writes information about the structure of infiles to standard output. infiles is an
arbitrary number of input files. All input files need to have the same structure with the same variables
on different timesteps. The information displayed depends on the chosen operator.

Operators

sinfo Short information listed by parameter identifier
Prints short information of a dataset. The information is divided into 4 sections. Section
1 prints one line per parameter with the following information:

« institute and source

e time c=constant v=varying

e type of statistical processing

e number of levels and z-axis number
o horizontal grid size and number

o data type

o parameter identifier

Section 2 and 3 gives a short overview of all grid and vertical coordinates. And the last
section contains short information of the time coordinate.

sinfon Short information listed by parameter name

The same as operator sinfo but using the name instead of the identifier to label the
parameter.

Example

To print short information of a dataset use:

cdo sinfon infile

This is the result of an ECHAMS5 dataset with 3 parameter over 12 timesteps:

—1 : Institut Source T Steptype Levels Num Points Num Dtype : Name
1 : MPIMET ECHAM5 ¢ instant 1 1 2048 1 F32 : GEOSP
2 : MPIMET ECHAM5 v instant 4 2 2048 1 F32 : T
3 : MPIMET ECHAM5 v instant 1 1 2048 1 F32 : TSURF

Grid coordinates
1 : gaussian : points=2048 (64x32) F16
longitude : 0 to 354.375 by 5.625 degrees__east circular

latitude : 85.7606 to —85.7606 degrees_north
Vertical coordinates

1 : surface : levels=1
2 : pressure : levels=4
level : 92500 to 20000 Pa
Time coordinate
time : 12 steps
YYYY-MMDD hh:mm: ss YYYY-MMDD hh:mm: ss YYYY-MM-DD hh:mm: ss YYYY-MM-DD hh :mm: ss
1987—01—31 12:00:00 1987—02—28 12:00:00 1987—03—31 12:00:00 1987—04—30 12:00:00
1987—05—31 12:00:00 1987—06—30 12:00:00 1987—07—31 12:00:00 1987—08—31 12:00:00
1987—09—30 12:00:00 1987—10—31 12:00:00 1987—11—30 12:00:00 1987—12—31 12:00:00

32

Reference manual

Information

2.1.3. XSINFO - Extra short information

Synopsis

<operator> infiles

Description

This module writes information about the structure of infiles to standard output. infiles is an
arbitrary number of input files. All input files need to have the same structure with the same variables
on different timesteps. The information displayed depends on the chosen operator.

Operators
xsinfo Extra short information listed by parameter name
Prints short information of a dataset. The information is divided into 4 sections. Section
1 prints one line per parameter with the following information:
 institute and source
e time c=constant v=varying
e type of statistical processing
e number of levels and z-axis number
e horizontal grid size and number
o data type
o memory type (float or double)
e parameter name
Section 2 to 4 gives a short overview of all grid, vertical and time coordinates.
xsinfop Extra short information listed by parameter identifier
The same as operator xsinfo but using the identifier instead of the name to label the
parameter.
Example
To print extra short information of a dataset use:
cdo xsinfo infile
This is the result of an ECHAMS5 dataset with 3 parameter over 12 timesteps:
—1 : Institut Source T Steptype Levels Num Points Num Dtype Mtype : Name
1 : MPIMET FECHAM5 c¢ instant 1 1 2048 1 F32 F32 : GEOSP
2 : MPIMET ECHAM5 v instant 4 2 2048 1 F32 F32 : T
3 : MPIMET ECHAM5 v instant 1 1 2048 1 F32 F32 : TSURF
Grid coordinates
1 : gaussian : points=2048 (64x32) F16
longitude: 0 to 354.375 by 5.625 degrees_east circular
latitude: 85.7606 to —85.7606 degrees_north
Vertical coordinates
1 : surface levels=1
2 : pressure : levels=4
level: 92500 to 20000 Pa
Time coordinate
steps: 12
time: 1987—01—31T18:00:00 to 1987—12—31T18:00:00 by 1 month
units: days since 1987—01—01T00:00:00
calendar: proleptic_gregorian

33

Information Reference manual

2.1.4. DIFF - Compare two datasets field by field
Synopsis

<operator>[,parameter] infilel infile2

Description

Compares the contents of two datasets field by field. The input datasets need to have the same
structure and its fields need to have the dimensions. Try the option names if the number of variables
differ. Exit status is 0 if inputs are the same and 1 if they differ.

Operators

diff Compare two datasets listed by parameter id
Provides statistics on differences between two datasets. For each pair of fields the operator
prints one line with the following information:

e Date and Time

e Level, Gridsize and number of Missing values

e Number of different values

o Occurrence of coefficient pairs with different signs (S)

o Occurrence of zero values (Z)

e Maxima of absolute difference of coefficient pairs

e Maxima of relative difference of non-zero coefficient pairs with equal signs

e Parameter identifier
Absdiff(t,2) = [ir(t, @) — ia(t,)

lin(t, 2) — 12(t, @)|
max(|iy (¢, x)|, |i2(t, z)|)

Reldif f(t,xz) =

diffn Compare two datasets listed by parameter name
The same as operator diff. Using the name instead of the identifier to label the parameter.

Parameter

maxcount INTEGER Stop after maxcount different fields

abslim FLOAT Limit of the maximum absolute difference (default: 0)
rellim FLOAT Limit of the maximum relative difference (default: 1)
names STRING Consideration of the variable names of only one input file (left/right) or

the intersection of both (intersect).

Example

To print the difference for each field of two datasets use:

cdo diffn infilel infile2

This is an example result of two datasets with one 2D parameter over 12 timesteps:

34

Reference manual

Information

Date Time Level Size Miss
1 1987—01—31 12:00:00 0 2048 1361
2 1987—02—28 12:00:00 0 2048 1361
3 1987—03—31 12:00:00 0 2048 1361
4 1987—04—30 12:00:00 0 2048 1361
5 1987—05—31 12:00:00 0 2048 1361
7 1987—07—31 12:00:00 0 2048 1361
8 : 1987—08—31 12:00:00 0 2048 1361
9 : 1987—09—30 12:00:00 0 2048 1361
10 : 1987—10—31 12:00:00 0 2048 1361
11 : 1987—11—-30 12:00:00 0 2048 1361
12 . 1987—12—31 12:00:00 0 2048 1361
11 of 12 fields differ

Diff
273
309
292
183
207
317
219
188
297
234
267

el e e e Mieo Mo lies Mo lles ico I O))

: Namg

7Z Max_Absdiff Max_Reldiff
F 0.00010681 4.1660e—07 :
F 6.1035e—05 2.3742e¢—07 :
F 7.6294e—05 3.3784e—07
F 7.6294e—05 3.5117e¢—07
F 0.00010681 4.0307e—07
F 9.1553e—05 3.5634e—07
F 7.6294e—05 2.8849e¢—07
F 7.6294e—05 3.6168e—07
F 9.1553e—05 3.5001e—07
F 6.1035e—05 2.3839e¢—07
F 9.3553e—05 3.7624e—07

SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST

2.1.5. NINFO - Print the number of parameters, levels or times

Synopsis

<operator> infile

Description

This module prints the number of variables, levels or times of the input dataset.

Operators

npar Number of parameters

Prints the number of parameters (variables).
nlevel Number of levels

Prints the number of levels for each variable.
nyear Number of years

Prints the number of different years.
nmon Number of months

Prints the number of different combinations of years and months.
ndate Number of dates

Prints the number of different dates.
ntime Number of timesteps

Prints the number of timesteps.

ngridpoints Number of gridpoints

Prints the number of gridpoints for each variable.

ngrids Number of horizontal grids

Prints the number of horizontal grids.

Example

To print the number of parameters (variables) in a dataset use:

cdo npar infile

To print the number of months in a dataset use:

cdo nmon infile

35

Information

Reference manual

2.1.6. SHOWINFO - Show variable information

Synopsis

<operator> infile

Description

This module prints meta-data information of all input variables. Depending on the chosen operator
the name, level, date, time and other information is printed.

Operators

showformat

showcode

showname

showstdname

showlevel

showltype

showyear

showmon

showdate

showtime

showtimestamp

showchunkspec

showfilter

Example

Show file format
Prints the file format of the input dataset.

Show code numbers
Prints the code number of all variables.

Show variable names
Prints the name of all variables.

Show standard names
Prints the standard name of all variables.

Show levels
Prints all levels for each variable.

Show GRIB level types
Prints the GRIB level type for all z-axes.

Show years
Prints all years.

Show months
Prints all months.

Show date information
Prints date information of all timesteps (format YYYY-MM-DD).

Show time information
Prints time information of all timesteps (format hh:mm:ss).

Show timestamp
Prints timestamp of all timesteps (format YYYY-MM-DDThh:mm:ss).

Show chunk specification
Prints NetCDF4 chunk specification of all variables.

Show filter specification
Prints NetCDF4 filter specification of all variables.

To print the code number of all variables in a dataset use:

cdo showcode infile

This is an example result of a dataset with three variables:

129 130 139

36

Reference manual Information

To print all months in a dataset use:

cdo showmon infile

This is an examples result of a dataset with an annual cycle:

123456789 10 11 12

2.1.7. SHOWATTRIBUTE - Show attributes
Synopsis

showattribute/attributes] infile

Description
This operator prints the attributes of the data variables of a dataset.
Each attribute has the following structure:
[var__nm@)][att__nm]
var_nm Variable name (optional). Example: pressure

att_nm Attribute name (optional). Example: units

The value of var__nm is the name of the variable containing the attribute (named att__nm) that
you want to print. Use wildcards to print the attribute att_ nm of more than one variable. A value
of var__nm of *’ will print the attribute att__nm of all data variables. If var_ nm is missing then
att__nm refers to a global attribute.

The value of att_ nm is the name of the attribute you want to print. Use wildcards to print more
than one attribute. A value of att_ nm of '*’ will print all attributes.

Parameter

attributes STRING Comma-separated list of attributes.

37

Information

Reference manual

2.1.8. FILEDES - Dataset description

Synopsis

<operator> infile

Description

This module provides operators to print meta information about a dataset. The printed meta-data
depends on the chosen operator.

Operators
partab Parameter table
Prints all available meta information of the variables.
codetab Parameter code table
Prints a code table with a description of all variables. For each variable the operator
prints one line listing the code, name, description and units.
griddes Grid description
Prints the description of all grids.
zaxisdes Z-axis description
Prints the description of all z-axes.
vct Vertical coordinate table
Prints the vertical coordinate table.
Example

Assume all variables of the dataset are on a regular Gausssian F16 grid. To print the grid description

of this dataset use:

cdo griddes infile

Result:

gridtype gaussian

gridsize 2048

xname lon

xlongname longitude

xunits degrees__east

yname lat

ylongname latitude

yunits degrees_north

xsize 64

ysize 32

xfirst 0

xinc 5.625

yvals 85.76058 80.26877 74.74454 69.21297 63.67863 58.1429 52.6065
47.06964 41.53246 35.99507 30.4575 24.91992 19.38223 13.84448
8.306702 2.768903 —2.768903 —8.306702 —13.84448 —19.38223
—24.91992 —30.4575 —35.99507 —41.53246 —47.06964 —52.6065
—58.1429 —63.67863 —69.21297 —74.74454 —80.26877 —85.76058

38

Reference manual

File operations

2.2. File operations

This section contains modules to perform operations on files.

Here is a short overview of all operators in this section:

apply Apply operators on each input file.
copy Copy datasets

clone Clone datasets

cat Concatenate datasets

tee Duplicate a data stream

pack Pack data

unpack Unpack data

setchunkspec Specify chunking

setfilter Specify filter

bitrounding Bit rounding

replace Replace variables

duplicate Duplicates a dataset
mergegrid Merge grid

merge Merge datasets with different fields
mergetime Merge datasets sorted by date and time
splitcode Split code numbers
splitparam Split parameter identifiers
splitname Split variable names
splitlevel Split levels

splitgrid Split grids

splitzaxis Split z-axes

splittabnum Split parameter table numbers
splithour Split hours

splitday Split days

splitseas Split seasons

splityear Split years

splityearmon Split in years and months
splitmon Split months

splitsel Split time selection

splitdate Splits a file into dates
distgrid Distribute horizontal grid
collgrid Collect horizontal grid

39

File operations Reference manual

2.2.1. APPLY - Apply operators

Synopsis

apply,operators infiles

Description

The apply utility runs the named operators on each input file. The input files must be enclosed in
square brackets. This utility can only be used on a series of input files. These are all operators with
more than one input file (infiles). Here is an incomplete list of these operators: copy, cat, merge,
mergetime, select, ENSSTAT. The parameter operators is a blank-separated list of CDO operators.
Use quotation marks if more than one operator is needed. Each operator may have only one input
and output stream.

Parameter

operators STRING Blank-separated list of CDO operators.

Example

Suppose we have multiple input files with multiple variables on different time steps. The input files
contain the variables U and V, among others. We are only interested in the absolute windspeed on
all time steps. Here is the standard CDO solution for this task:

cdo expr,wind="sqrt(ukutvxv)" -mergetime infilel infile2 infile3 outfile

This first joins all the time steps together and then calculates the wind speed. If there are many
variables in the input files, this procedure is ineffective. In this case it is better to first calculate the
wind speed:

cdo mergetime -expr,wind="sqrt(uxu+vxv)" infilel \
—expr,wind="sqrt (uxutvkv)" infile2 \
—expr,wind="sqrt (uxutv*v)" infile3 outfile

However, this can quickly become very confusing with more than 3 input files. The apply operator
solves this problem:

cdo mergetime -apply,-expr,wind="sqrt(uxu+v*v)" [infilel infile2 infile3] outfil

Another example is the calculation of the mean value over several input files with ensmean. The input
files contain several variables, but we are only interested in the variable named XXX:

cdo ensmean -apply,-selname,XXX [infilel infile2 infile3] outfile

40

Reference manual File operations

2.2.2. COPY - Copy datasets
Synopsis

<operator> infiles outfile

Description

This module contains operators to copy, clone or concatenate datasets. infiles is an arbitrary
number of input files. All input files need to have the same structure with the same variables on
different timesteps.

Operators
copy Copy datasets
Copies all input datasets to outfile.

clone Clone datasets
Copies all input datasets to outfile. In contrast to the copy operator, clone tries not to
change the input data. GRIB records are neither decoded nor decompressed.

cat Concatenate datasets
Concatenates all input datasets and appends the result to the end of outfile. If outfile
does not exist it will be created.

Example

To change the format of a dataset to NetCDF use:

cdo -f nc copy infile outfile.nc

Add the option -1’ to create a relative time axis, as is required for proper recognition by GrADS or
Ferret:

cdo -r —-f nc copy infile outfile.nc

To concatenate 3 datasets with different timesteps of the same variables use:

cdo copy infilel infile2 infile3 outfile

If the output dataset already exists and you wish to extend it with more timesteps use:

cdo cat infilel infile2 infile3 outfile

41

File operations Reference manual

2.2.3. TEE - Duplicate a data stream and write it to file
Synopsis

tee,outfile2 infile outfilel

Description

This operator copies the input dataset to outfilel and outfile2. The first output stream in
outfilel can be further processesd with other cdo operators. The second output outfile?2 is written
to disk. It can be used to store intermediate results to a file.

Parameter
outfile2 STRING Destination filename for the copy of the input file

Example

To compute the daily and monthy average of a dataset use:

cdo monavg -tee,outfile_dayavg dayavg infile outfile_monavg

2.2.4. PACK - Pack data
Synopsis

pack/[,parameter] infile outfile

Description

Packing reduces the data volume by reducing the precision of the stored numbers. It is implemented
using the NetCDF attributes add_offset and scale_factor. The operator pack calculates the
attributes add_offset and scale_factor for all variables. The default data type for all variables is
automatically changed to 16-bit integer. Use the CDO option -b to change the data type to a different
integer precision, if needed. Missing values are automatically transformed to the current data type.

Alternatively, the pack parameters add _offset and scale factor can be read from a file for each

variable.
Parameter
printparam BOOL Print pack parameters to stdout for each variable
filename STRING Read pack parameters from file for each variable[format: name=<>

add_ offset=<> scale_factor=<>]

2.2.5. UNPACK - Unpack data
Synopsis

unpack infile outfile

Description

Packing reduces the data volume by reducing the precision of the stored numbers. It is implemented
using the NetCDF attributes add_offset and scale_factor. The operator unpack unpack all packed
variables. The default data type for all variables is automatically changed to 32-bit floats. Use the
CDO option -b F64 to change the data type to 64-bit floats, if needed.

42

Reference manual File operations

2.2.6. SETCHUNKSPEC - Specify chunking
Synopsis

setchunkspec,parameter infile outfile

Description

Specify chunking for selected variables in the output. Chunking is available for NetCDF4 and useful
to specify the units of disk access and compression. The filename parameter is used to specify the
file which contains the chunk specification for each variable. The chunkspec argument is a comma-
separated string with the chunk size for the dimensions x,y,z,t. A chunkspec must name at least one
dimension, e.g. t=<chunksize> to set the chunk size of the time dimension to <chunksize>.

Use the CDO option --chunkspec instead of setchunkspec if all variables require the same chunks.

Parameter

filename STRING Name of the file containing the chunk specification per variable [format:
varname="<chunkspec>"]

2.2.7. SETFILTER - Specify filter
Synopsis

setfilter,parameter infile outfile

Description

Specify filter for selected variables in the output. Filters are available for NetCDF4 and mainly
used to compress/decompress data. NetCDF4 uses the HDF5 plugins for filter support. To find the
HDF5 plugins, the environment variable HDF5__PLUGIN_PATH must point to the directory with
the installed plugins. The program may terminate unexpectedly if filters are used whose plugins are
not found.

The filename parameter is used to specify the file which contains the filter specification for each
variable. A filter specification consists of the filterld and the filter parameters. CDO supports
multiple filters connected with ’|’. Here is a filter specification for bzip2 (filterId: 307) combined with
szip (filterId:4): "307,9/4,32,32".

Use the CDO option --filter instead of setfilter if all variables require the same filter. More information
about NetCDF4 filters can be found in https://docs.unidata.ucar.edu/netedf-c/current/filters.html.

Parameter

filename STRING Name of the file containing the filter specification per variable [format:
varname="<filterspec>"]

43

File operations Reference manual

2.2.8. BITROUNDING - Bit rounding
Synopsis

bitrounding/,parameter] infile outfile

Description

This operator calculates for each field the number of necessary mantissa bits to get a certain infor-
mation level in the data. With this number of significant bits (numbits) a rounding of the data is
performed. This allows the data to be compressed to a higher level.

The default value of the information level is 0.9999 and can be adjusted with the parameter inflevel.
That means 99.99% of the information in the mantissa bits is preserved.

Alternatively, the number of significant bits can be set for all variables with the numbits parameter.
Furthermore, numbits can be assigned for each variable via the filename parameter. In this case,
numbits is still calculated for all variables if they are not present in the file.

The analysis of the bit information is based on the Julia library BitInformation.jl. The procedure to
derive the number of significant mantissa bits was adapted from the Python library xbitinfo. Quantize
to the number of mantissa bits is done with IEEE rounding using code from NetCDF 4.9.0.

Currently only 32-bit float data is rounded. Data with missing values are not yet supported for the
calculation of significant bits.

Parameter
inflevel FLOAT Information level (0 - 1) [default: 0.9999]
addbits INTEGER Add bits to the number of significant bits [default: 0]
minbits INTEGER Minimum value of the number of bits [default: 1]

maxbits INTEGER Maximum value of the number of bits [default: 23]
numsteps INTEGER Set to 1 to run the calculation only in the first time step
numbits INTEGER Set number of significant bits

printbits BOOL Print max. numbits per variable of 1st timestep to stdout [format: name=numbits]
filename STRING Read number of significant bits per variable from file [format: name=numbits]
Example

Apply bit rounding to all 32-bit float fields, preserving 99.9% of the information, followed by com-
pression and storage to NetCDF4:

cdo —-f nc4 -z zip bitrounding,inflevel=0.999 infile outfile

Add the option -v’ to view used number of mantissa bits for each field:

cdo -v -f nc4 -z zip bitrounding,inflevel=0.999 infile outfile

44

https://github.com/milankl/BitInformation.jl
https://github.com/observingClouds/xbitinfo

Reference manual File operations

2.2.9. REPLACE - Replace variables
Synopsis

replace infilel infile2 outfile

Description

This operator replaces variables in infilel by variables from infile2 and write the result to outfile.
Both input datasets need to have the same number of timesteps. All variable names may only occur
once!

Example

Assume the first input dataset infilel has three variables with the names geosp, t and tslml and the
second input dataset infile2 has only the variable tslm1. To replace the variable tslml in infilel
by tslml from infile2 use:

cdo replace infilel infile2 outfile

2.2.10. DUPLICATE - Duplicates a dataset
Synopsis
duplicate[,ndup] infile outfile

Description

This operator duplicates the contents of infile and writes the result to outfile. The optional
parameter sets the number of duplicates, the default is 2.

Parameter

ndup INTEGER Number of duplicates, default is 2.

2.2.11. MERGEGRID - Merge grid
Synopsis

mergegrid infilel infile2 outfile

Description

Merges grid points of all variables from infile2 to infilel and write the result to outfile. Only
the non missing values of infile2 will be used. The horizontal grid of infile2 should be smaller
or equal to the grid of infilel and the resolution must be the same. Only rectilinear grids are
supported. Both input files need to have the same variables and the same number of timesteps.

45

File operations

Reference manual

2.2.12. MERGE - Merge datasets

Synopsis

merge infiles outfile

mergetime/,options] infiles outfile

Description
This module reads datasets from several input files, merges them and writes the resulting dataset to
outfile.
Operators
merge Merge datasets with different fields
Merges time series of different fields from several input datasets. The number of fields
per timestep written to outfile is the sum of the field numbers per timestep in all
input datasets. The time series on all input datasets are required to have different
fields and the same number of timesteps. The fields in each different input file either
have to be different variables or different levels of the same variable. A mixture of
different variables on different levels in different input files is not allowed.
mergetime Merge datasets sorted by date and time
Merges all timesteps of all input files sorted by date and time. All input files need
to have the same structure with the same variables on different timesteps. After this
operation every input timestep is in outfile and all timesteps are sorted by date
and time.
Parameter
skip same__time BOOL Skips all consecutive timesteps with a double entry of the same
timestamp.
names STRING Fill missing variable names with missing values (union) or use the
intersection (intersect).
Note

Operators of this module need to open all input files simultaneously. The maximum number of open
files depends on the operating system!

Example

Assume three datasets with the same number of timesteps and different variables in each dataset. To
merge these datasets to a new dataset use:

cdo merge infilel infile2 infile3 outfile

Assume you split a 6 hourly dataset with splithour. This produces four datasets, one for each hour.
The following command merges them together:

cdo mergetime infilel infile2 infile3 infile4 outfile

46

Reference manual File operations

2.2.13. SPLIT - Split a dataset
Synopsis
< operator >[,parameter] infile obase

Description

This module splits infile into pieces. The output files will be named <obase><xxx><suffix>
where suffix is the filename extension derived from the file format. xxx and the contents of the output
files depends on the chosen operator. params is a comma-separated list of processing parameters.

Operators

splitcode Split code numbers
Splits a dataset into pieces, one for each different code number. xxx will have three
digits with the code number.

splitparam Split parameter identifiers
Splits a dataset into pieces, one for each different parameter identifier. xxx will be
a string with the parameter identifier.

splitname Split variable names
Splits a dataset into pieces, one for each variable name. xxx will be a string with
the variable name.

splitlevel Split levels
Splits a dataset into pieces, one for each different level. xxx will have six digits
with the level.

splitgrid Split grids
Splits a dataset into pieces, one for each different grid. xxx will have two digits
with the grid number.

splitzaxis Split z-axes
Splits a dataset into pieces, one for each different z-axis. xxx will have two digits
with the z-axis number.

splittabnum Split parameter table numbers
Splits a dataset into pieces, one for each GRIB1 parameter table number. xxx will
have three digits with the GRIB1 parameter table number.

Parameter
swap STRING Swap the position of obase and xxx in the output filename
uuid=<attname> STRING Add a UUID as global attribute <attname> to each output file

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

Note

Operators of this module need to open all output files simultaneously. The maximum number of open
files depends on the operating system!

47

File operations Reference manual

Example

Assume an input GRIB1 dataset with three variables, e.g. code number 129, 130 and 139. To split
this dataset into three pieces, one for each code number use:

cdo splitcode infile code

Result of 'dir codex’:

codel29.grb codel30.grb codel39.grb

48

Reference manual File operations

2.2.14. SPLITTIME - Split timesteps of a dataset
Synopsis

<operator> infile obase

splitmon/ format] infile obase

Description

This module splits infile into timesteps pieces. The output files will be named <obase><xxx><suffix>
where suffix is the filename extension derived from the file format. xxx and the contents of the out-
put files depends on the chosen operator.

Operators

splithour Split hours
Splits a file into pieces, one for each different hour. xxx will have two digits with
the hour.

splitday Split days
Splits a file into pieces, one for each different day. xxx will have two digits with
the day.

splitseas Split seasons
Splits a file into pieces, one for each different season. xxx will have three characters
with the season.

splityear Split years
Splits a file into pieces, one for each different year. xxx will have four digits with
the year (YYYY).

splityearmon Split in years and months
Splits a file into pieces, one for each different year and month. xxx will have six
digits with the year and month (YYYYMM).

splitmon Split months
Splits a file into pieces, one for each different month. xxx will have two digits with
the month.

Parameter
format STRING C-style format for strftime() (e.g. %B for the full month name)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

Note

Operators of this module need to open all output files simultaneously. The maximum number of open
files depends on the operating system!

49

File operations Reference manual

Example

Assume the input GRIB1 dataset has timesteps from January to December. To split each month with
all variables into one separate file use:

cdo splitmon infile mon

Result of ’dir monx*’:

mon0l1.grb mon02.grb mon03.grb mon0O4.grb mon05.grb mon06.grb
mon07.grb mon08.grb mon09.grb monl0.grb monll.grb monl2.grb

2.2.15. SPLITSEL - Split selected timesteps
Synopsis

splitsel,nsets[,noffset[,nskip]] infile obase

Description

This operator splits infile into pieces, one for each adjacent sequence ti,....,t_n of timesteps of
the same selected time range. The output files will be named <obase><nnnnnn><suffix> where
nnnnnn is the sequence number and suffix is the filename extension derived from the file format.

Parameter
nsets INTEGER Number of input timesteps for each output file
noffset INTEGER Number of input timesteps skipped before the first timestep range (optional)
nskip INTEGER Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

2.2.16. SPLITDATE - Splits a file into dates
Synopsis

splitdate infile obase

Description

This operator splits infile into pieces, one for each different date. The output files will be named
<obase><YYYY-MM-DD><suffix> where YYYY-MM-DD is the date and suffix is the filename exten-
sion derived from the file format.

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

20

Reference manual File operations

2.2.17. DISTGRID - Distribute horizontal grid
Synopsis

distgrid,nx[,ny] infile obase

Description

This operator distributes a dataset into smaller pieces. Each output file contains a different region
of the horizontal source grid. 2D Lon/Lat grids can be split into nx*ny pieces, where a target grid
region contains a structured longitude/latitude box of the source grid. Data on an unstructured grid
is split into nx pieces. The output files will be named <obase><xxx><suffix> where suffix is the
filename extension derived from the file format. xxx will have five digits with the number of the target
region.

Parameter
nx INTEGER Number of regions in x direction, or number of pieces for unstructured grids

ny INTEGER Number of regions in y direction [default: 1]

Note

This operator needs to open all output files simultaneously. The maximum number of open files
depends on the operating system!

Example

Distribute data on a 2D Lon/Lat grid into 6 smaller files, each output file receives one half of x and
a third of y of the source grid:

cdo distgrid,2,3 infile.nc obase

Below is a schematic illustration of this example:
-20 20 20

-20 20 60 45

]

15
-15 .'
b
et ||
45
-20 20

-20 20 20 60

On the left side is the data of the input file and on the right side is the data of the six output files.

ol

File operations Reference manual

2.2.18. COLLGRID - Collect horizontal grid
Synopsis

collgrid[,parameter] infiles outfile

Description

This operator collects the data of the input files to one output file. All input files need to have the
same variables and the same number of timesteps on a different horizonal grid region. If the source
regions are on a structured lon/lat grid, all regions together must result in a new structured lat/long
grid box. Data on an unstructured grid are concatenated in the order of the input files. For ICON
restart data, the array global cell indices is used for indexing if it is available. The parameter nx
needs to be specified only for curvilinear grids.

Parameter
nx INTEGER Number of regions in x direction [default: number of input files]
name STRING Comma-separated list of variable names.
levidx INTEGER Comma-separated list or first/last[/inc] range of index of levels.
gridtype STRING For unstructured grids, set to unstructured.

Note

This operator needs to open all input files simultaneously. The maximum number of open files depends
on the operating system!

Example
Collect the horizonal grid of 6 input files. Each input file contains a lon/lat region of the target grid:

cdo collgrid infile[1-6] outfile

Below is a schematic illustration of this example:

15

-15

-20 20 20 60
45 ‘ -20 20 60
b
Pt 45 W 45
"
15
|
.
y |
I+l
20 60

-20 20 20 60

02

Reference manual File operations

On the left side is the data of the six input files and on the right side is the collected data of the
output file.

o3

Selection

Reference manual

2.3. Selection

This section contains modules to select time steps, fields or a part of a field from a dataset.

Here is a short overview of all operators in this section:

select
delete

selmulti
delmulti
changemulti

selparam
delparam
selcode
delcode
selname
delname
selstdname
sellevel
sellevidx
selgrid
selzaxis
selzaxisname
selltype
seltabnum

seltimestep
seltime
selhour
selday
selmonth
selyear
selseason
seldate
selsmon

sellonlatbox
selindexbox

selregion
selcircle

selgridcell
delgridcell

samplegrid
selyearidx
seltimeidx

bottomvalue
topvalue
isosurface

Select fields
Delete fields

Select multiple fields
Delete multiple fields
Change identication of multiple fields

Select parameters by identifier
Delete parameters by identifier
Select parameters by code number
Delete parameters by code number
Select parameters by name

Delete parameters by name

Select parameters by standard name
Select levels

Select levels by index

Select grids

Select z-axes

Select z-axes by name

Select GRIB level types

Select parameter table numbers

Select timesteps
Select times

Select hours

Select days

Select months
Select years

Select seasons
Select dates

Select single month

Select a longitude/latitude box
Select an index box

Select cells inside regions
Select cells inside a circle

Select grid cells
Delete grid cells

Resample grid
Select year by index
Select timestep by index

Extract bottom level
Extract top level
Extract isosurface

54

Reference manual Selection

2.3.1. SELECT - Select fields
Synopsis

<operator >,parameter infiles outfile

Description

This module selects some fields from infiles and writes them to outfile. infiles is an arbitrary
number of input files. All input files need to have the same structure with the same variables on
different timesteps. The fields selected depends on the chosen parameters. Parameter is a comma-
separated list of "key=value" pairs. A range of integer values can be specified by first/last[/inc].
Wildcards are supported for string values.

Operators

select Select fields
Selects all fields with parameters in a user given list.

delete Delete fields
Deletes all fields with parameters in a user given list.

Parameter
name STRING Comma-separated list of variable names.
param STRING Comma-separated list of parameter identifiers.
code INTEGER Comma-separated list or first/last[/inc] range of code numbers.
level FLOAT Comma-separated list of vertical levels.
levrange FLOAT First and last value of the level range.
levidx INTEGER Comma-separated list or first/last[/inc] range of index of levels.
zaxisname STRING Comma-separated list of zaxis names.
zaxisnum INTEGER Comma-separated list or first/last[/inc] range of zaxis numbers.
Itype INTEGER Comma-separated list or first/last[/inc] range of GRIB level types.
gridname STRING Comma-separated list of grid names.
gridnum INTEGER Comma-separated list or first/last[/inc] range of grid numbers.
steptype STRING Comma-separated list of timestep types (constant|avg|accum|min|max|range|diff|s
date STRING Comma-separated list of dates (format: YYYY-MM-DDThh:mm:ss).
startdate STRING Start date (format: YYYY-MM-DDThh:mm:ss).
enddate STRING End date (format: YYYY-MM-DDThh:mm:ss).
minute INTEGER Comma-separated list or first/last]/inc] range of minutes.
hour INTEGER Comma-separated list or first/last[/inc] range of hours.
day INTEGER Comma-separated list or first/last[/inc] range of days.
month INTEGER Comma-separated list or first/last[/inc| range of months.
season STRING Comma-separated list of seasons (substring of DJFMAMJJA-

SOND or ANN).

year INTEGER Comma-separated list or first/last[/inc] range of years.

25

Selection

Reference manual

dom STRING Comma-separated list of the day of month (e.g. 29feb).
timestep INTEGER Comma-separated list or first/last[/inc] range of timesteps. Neg-
ative values select timesteps from the end (NetCDF only).
timestep_of year INTEGER Comma-separated list or first/last[/inc| range of timesteps of year.
timestepmask STRING Read timesteps from a mask file.
Example

Assume you have 3 inputfiles. Fach inputfile contains the same variables for a different time period.
To select the variable T,U and V on the levels 200, 500 and 850 from all 3 input files, use:

cdo select,name=T,U,V,1evel=200,500,850 infilel infile2 infile3 outfile

To remove the February 29th use:

cdo delete,dom=29feb infile outfile

o6

Reference manual Selection

2.3.2. SELMULTI - Select multiple fields via GRIB1 parameters
Synopsis
< operator >,selection-specification infile outfile

Description

This module selects multiple fields from infile and writes them to outfile. selection-specification
is a filename or in-place string with the selection specification. Each selection-specification has the
following compact notation format:

<type>(parameters; leveltype(s); levels)

type sel for select or del for delete (optional)
parameters GRIBI1 parameter code number
leveltype GRIBLI level type
levels value of each level
Examples:

(1; 103; 0)

(33,34; 105; 10)
(11,17; 105; 2)
(71,73 ,74,75,61,62,65,117,67,122,121,11,131,66,84,111,112; 105; 0)

The following descriptive notation can also be used for selection specification from a file:

SELECT/DELETE, PARAMETER=parameters, LEVTYPE=leveltye(s), LEVEL=levels

Examples:

SELECT, PARAMETER=1, LEVIYPE=103, LEVEL=0

SELECT, PARAMETER=33/34, LEVTYPE=105, LEVEL=10

SELECT, PARAMETER=11/17, LEVTYPE=105, LEVEL=2

SELECT, PARAMETER=71/73/74/75/61/62/65/117/67/122, LEVTYPE=105, LEVEL=0
DELETE, PARAMETER=128, LEVIYPE=109, LEVEL=+

The following will convert Pressure from Pa into hPa; Temp from Kelvin to Celsius:

SELECT, PARAMETER=1, LEVTYPE= 103, LEVEL=0, SCALE=0.01
SELECT, PARAMETER=11, LEVIYPE=105, LEVEL=2, OFFSET=273.15

If SCALE and/or OFFSET are defined, then the data values are scaled as SCALE*(VALUE-OFFSET).

Operators

selmulti Select multiple fields

delmulti Delete multiple fields

changemulti Change identication of multiple fields
Example

Change ECMWEF GRIB code of surface pressure to Hirlam notation:

cdo changemulti,’{(134;1;%[1;105;*%)}’ infile outfile

o7

Selection Reference manual

2.3.3. SELVAR - Select fields
Synopsis

< operator >,parameter infile outfile
selcode,codes infile outfile
delcode,codes infile outfile
selname,names infile outfile
delname,names infile outfile
selstdname,stdnames infile outfile
sellevel levels infile outfile
sellevidx,levidx infile outfile
selgrid,grids infile outfile
selzaxis,zaxes infile outfile
selzaxisname,zaxisnames infile outfile
selltype,ltypes infile outfile

seltabnum,tabnums infile outfile

Description

This module selects some fields from infile and writes them to outfile. The fields selected de-
pends on the chosen operator and the parameters. A range of integer values can be specified by
first /last[/inc].

Operators

selparam Select parameters by identifier

Selects all fields with parameter identifiers in a user given list.
delparam Delete parameters by identifier

Deletes all fields with parameter identifiers in a user given list.
selcode Select parameters by code number

Selects all fields with code numbers in a user given list or range.
delcode Delete parameters by code number

Deletes all fields with code numbers in a user given list or range.
selname Select parameters by name

Selects all fields with parameter names in a user given list.
delname Delete parameters by name

Deletes all fields with parameter names in a user given list.
selstdname Select parameters by standard name

Selects all fields with standard names in a user given list.
sellevel Select levels

Selects all fields with levels in a user given list.
sellevidx Select levels by index

Selects all fields with index of levels in a user given list or range.
selgrid Select grids

Selects all fields with grids in a user given list.

o8

Reference manual Selection

selzaxis Select z-axes
Selects all fields with z-axes in a user given list.

selzaxisname Select z-axes by name
Selects all fields with z-axis names in a user given list.

selltype Select GRIB level types
Selects all fields with GRIB level type in a user given list or range.

seltabnum Select parameter table numbers
Selects all fields with parameter table numbers in a user given list or range.

Parameter
parameter STRING Comma-separated list of parameter identifiers.
codes INTEGER Comma-separated list or first/last[/inc] range of code numbers.
names STRING Comma-separated list of variable names.
stdnames STRING Comma-separated list of standard names.
levels FLOAT Comma-separated list of vertical levels.
levidx INTEGER Comma-separated list or first/last[/inc] range of index of levels.
Itypes INTEGER Comma-separated list or first/last[/inc] range of GRIB level types.
grids STRING Comma-separated list of grid names or numbers.
zaxes STRING Comma-separated list of z-axis types or numbers.
zaxisnames STRING Comma-separated list of z-axis names.
tabnums INTEGER Comma-separated list or range of parameter table numbers.
Example

Assume an input dataset has three variables with the code numbers 129, 130 and 139. To select the
variables with the code number 129 and 139 use:

cdo selcode, 129,139 infile outfile

You can also select the code number 129 and 139 by deleting the code number 130 with:

cdo delcode,130 infile outfile

29

Selection

Reference manual

2.3.4. SELTIME - Select timesteps

Synopsis

seltimestep,timesteps infile outfile

seltime,times infile outfile

selhour,hours infile outfile

selday,days infile outfile

selmonth,months infile outfile

selyear,years infile outfile

selseason,seasons infile outfile

seldate,startdate[,enddate] infile outfile

selsmon,month[,nts1[,nts2]] infile outfile

Description

This module selects user specified timesteps from infile and writes them to outfile. The timesteps
selected depends on the chosen operator and the parameters. A range of integer values can be specified
by first/last[/inc].

Operators

seltimestep

seltime

selhour

selday

selmonth

selyear

selseason

seldate

selsmon

Select timesteps
Selects all timesteps with a timestep in a user given list or range.

Select times
Selects all timesteps with a time in a user given list or range.

Select hours
Selects all timesteps with a hour in a user given list or range.

Select days
Selects all timesteps with a day in a user given list or range.

Select months
Selects all timesteps with a month in a user given list or range.

Select years
Selects all timesteps with a year in a user given list or range.

Select seasons
Selects all timesteps with a month of a season in a user given list.

Select dates
Selects all timesteps with a date in a user given range.

Select single month
Selects a month and optional an arbitrary number of timesteps before and after this
month.

60

Reference manual

Selection

Parameter

timesteps

times
hours
days
months
years

seasons

startdate
enddate
ntsl

nts2

INTEGER

STRING

INTEGER
INTEGER
INTEGER
INTEGER

STRING
ANN).

STRING
STRING
INTEGER
INTEGER

Comma-separated list or first/last[/inc] range of timesteps. Negative val-
ues select timesteps from the end (NetCDF only).

Comma-separated list of times (format hh:mm:ss).

Comma-separated list or first/last[/inc] range of hours.

Comma-separated list or first/last[/inc] range of days.

Comma-separated list or first/last[/inc] range of months.
[

Comma-separated list or first/last[/inc] range of years.

Comma-separated list of seasons (substring of DJFMAMJJASOND or

Start date (format: YYYY-MM-DDThh:mm:ss).
End date (format: YYYY-MM-DDThh:mm:ss) [default: startdate].
Number of timesteps before the selected month [default: 0].

Number of timesteps after the selected month [default: ntsl1].

61

Selection

Reference manual

2.3.5. SELBOX - Select a box

Synopsis

sellonlatbox,lonl,lon2,lat1,lat2 infile outfile

selindexbox,idx1,idx2,idyl,idy2 infile outfile

Description

Selects grid cells inside a lon/lat or index box.

Operators
sellonlatbox
selindexbox

Parameter
lonl FLOAT
lon2 FLOAT
latl FLOAT
lat2 FLOAT
idx1 INTEGER
idx2 INTEGER
idyl INTEGER
idy2 INTEGER

Example

Select a longitude/latitude box

Selects grid cells inside a lon/lat box. The user must specify the longitude and
latitude of the edges of the box. Only those grid cells are considered whose grid
center lies within the lon/lat box. For rotated lon/lat grids the parameters must
be specified in rotated coordinates.

Select an index box

Selects grid cells within an index box. The user must specify the indices of the
edges of the box. The index of the left edge can be greater then the one of the
right edge. Use negative indexing to start from the end. The input grid must be a
regular lon/lat or a 2D curvilinear grid.

Western longitude in degrees

Eastern longitude in degrees

Southern or northern latitude in degrees
Northern or southern latitude in degrees
Index of first longitude (1 - nlon)

Index of last longitude (1 - nlon)

Index of first latitude (1 - nlat)

Index of last latitude (1 - nlat)

To select the region with the longitudes from 30W to 60E and latitudes from 30N to 80N from all
input fields use:

cdo sellonlatbox,-30,60,30,80 infile outfile

If the input dataset has fields on a regular Gaussian F16 grid, the same box can be selected with
selindexbox by:

cdo selindexbox,60,11,3,11 infile outfile

62

Reference manual Selection

2.3.6. SELREGION - Select horizontal regions
Synopsis
selregion,regions infile outfile

selcircle[,parameter] infile outfile

Description

Selects all grid cells with the center point inside user defined regions or a circle. The resulting grid is

unstructured.
Operators
selregion Select cells inside regions
Selects all grid cells with the center point inside the regions. Regions can be defined
by the user via an ASCII file. Each region consists of the geographic coordinates of a
polygon. Each line of a polygon description file contains the longitude and latitude of
one point. Each polygon description file can contain one or more polygons separated
by a line with the character &.
Predefined regions of countries can be specified via the country codes. A country is
specified with dew:<CountryCode>. Country codes can be combined with the plus
sign.
selcircle Select cells inside a circle
Selects all grid cells with the center point inside a circle. The circle is described by
geographic coordinates of the center and the radius of the circle.
Parameter
regions STRING Comma-separated list of ASCII formatted files with different regions
lon FLOAT Longitude of the center of the circle in degrees, default lon=0.0
lat FLOAT Latitude of the center of the circle in degrees, default lat=0.0
radius STRING Radius of the circle, default radius=1deg (units: deg, rad, km, m)
Example

To select all grid cells of a country use the country code with data from the Digital Chart of the
World. Here is an example for Spain with the country code ES:

cdo selregion,dcw:ES infile outfile

63

Selection Reference manual

2.3.7. SELGRIDCELL - Select grid cells
Synopsis
< operator >,indices infile outfile

Description

The operator selects grid cells of all fields from infile. The user must specify the index of each grid
cell. The resulting grid in outfile is unstructured.

Operators

selgridcell Select grid cells

delgridcell Delete grid cells

Parameter

indices ~ INTEGER Comma-separated list or first/last[/inc] range of indices
2.3.8. SAMPLEGRID - Resample grid
Synopsis

samplegrid,factor infile outfile

Description

This is a special operator for resampling the horizontal grid. No interpolation takes place. Resample
factor=2 means every second grid point is removed. Only rectilinear and curvilinear source grids are
supported by this operator.

Parameter

factor INTEGER Resample factor, typically 2, which will half the resolution
2.3.9. SELYEARIDX - Select year by index
Synopsis

selyearidx infilel infile2 outfile

Description

Selects field elements from infile2 according to a year index from infilel. The index of the year
in infilel should be the result of corresponding yearminidx or yearmaxidx operations, respectively.

64

Reference manual Selection

2.3.10. SELTIMEIDX - Select timestep by index
Synopsis
seltimeidx infilel infile2 outfile

Description

Selects field elements from infile2 according to a timestep index from infilel. The index of
the timestep in infilel should be the result of corresponding timminidx or timmaxidx operations,
respectively.

65

Selection Reference manual

2.3.11. SELSURFACE - Extract surface
Synopsis
<operator> infile outfile

isosurface,isovalue infile outfile

Description

This module computes a surface from all 3D variables. The result is a horizonal 2D field.

Operators
bottomvalue Extract bottom level
This operator selects the valid values at the bottom level. The NetCDF CF com-
pliant attribute positive is used to determine where top and bottom are. If this
attribute is missing, low values are bottom and high values are top.
topvalue Extract top level
This operator selects the valid values at the top level. The NetCDF CF compliant
attribute positive is used to determine where top and bottom are. If this attribute
is missing, low values are bottom and high values are top.
isosurface Extract isosurface
This operator computes an isosurface. The value of the isosurfce is specified by the
parameter isovalue. The isosurface is calculated by linear interpolation between
two layers.
Parameter
isovalue FLOAT Isosurface value

66

Reference manual Conditional selection

2.4. Conditional selection

This section contains modules to conditional select field elements. The fields in the first input file are
handled as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Here is a short overview of all operators in this section:

ifthen If then

ifnotthen If not then

ifthenelse If then else

ifthenc If then constant

ifnotthenc If not then constant

reducegrid Reduce input file variables to locations, where mask is non-zero.

67

Conditional selection Reference manual

2.4.1. COND - Conditional select one field
Synopsis

<operator> infilel infile2 outfile

Description

This module selects field elements from infile2 with respect to infilel and writes them to outfile.
The fields in infilel are handled as a mask. A value not equal to zero is treated as "true', zero is
treated as "false". The number of fields in infilel has either to be the same as in infile2 or the
same as in one timestep of infile2 or only one. The fields in outfile inherit the meta data from
infile2.

Operators

ifthen If then

o(t,z) = ip(t,w) if iy(t,x) #0 A ir(t,) # miss

miss if 41(¢t,z) =0 V 41(¢,x) = miss
ifnotthen If not then
io(t,x) if d1(t,2) =0 A 41(t,x) # miss
o(t,z) = : e : :
miss if 41[t,x) A0 V i1(t,x) = miss

Example

To select all field elements of infile2 if the corresponding field element of infilel is greater than
0 use:

cdo ifthen infilel infile2 outfile

2.4.2. COND2 - Conditional select two fields
Synopsis

ifthenelse infilel infile2 infile3 outfile

Description

This operator selects field elements from infile2 or infile3 with respect to infilel and writes
them to outfile. The fields in infilel are handled as a mask. A value not equal to zero is treated
as "true", zero is treated as "false". The number of fields in infilel has either to be the same as in
infile2 or the same as in one timestep of infile2 or only one. infile2 and infile3 need to have
the same number of fields. The fields in outfile inherit the meta data from infile2.

io(t,x) if 41(t,x) #0 A i1(t,) # miss
o(t,x) =< is(t,xz) if i1(¢t,z) =0 A i1(t,) # miss
miss if 41 (¢,) = miss

Example

To select all field elements of infile2 if the corresponding field element of infilel is greater than
0 and from infile3 otherwise use:

cdo ifthenelse infilel infile2 infile3 outfile

68

Reference manual Conditional selection

2.4.3. CONDC - Conditional select a constant
Synopsis
<operator>,c infile outfile

Description

This module creates fields with a constant value or missing value. The fields in infile are handled
as a mask. A value not equal to zero is treated as "true", zero is treated as "false".

Operators
ifthenc If then constant
¢ ifi(t,x) #0 A i(t,z) # miss
o(t,z) = L) .
miss if i(t,z) =0 V i(t,x) = miss
ifnotthenc If not then constant
oft, z) = c %f z.(t,x) =0 A z.(t,:z:) # miss
miss if i(t,z) #0 V i(t,x) = miss
Parameter
c FLOAT Constant
Example

To create fields with the constant value 7 if the corresponding field element of infile is greater than
0 use:

cdo ifthenc,7 infile outfile

69

Conditional selection Reference manual

2.4.4. MAPREDUCE - Reduce fields to user-defined mask
Synopsis

reducegrid,mask/,limitCoordsOutput] infile outfile

Description

This module holds an operator for data reduction based on a user defined mask. The output grid
is unstructured and includes coordinate bounds. Bounds can be avoided by using the additional
‘nobounds’ keyword. With 'nocoords’ given, coordinates a completely suppressed.

Parameter
mask STRING file which holds the mask field
limitCoordsOutput STRING optional parameter to limit coordinates output: 'nobounds’ dis-
ables coordinate bounds, 'nocoords’ avoids all coordinate information
Example

To limit data fields to land values, a mask has to be created first with

cdo —gtc,0 -topo,ni9%6 lsm_gme96.grb

Here a GME grid is used. Say temp_gme96.grb contains a global temperture field. The following
command limits the global grid to landpoints.

cdo -f nc reduce,lsm_gme96.grb temp_gme96.grb tempOnLand_gme96.nc

Note that output file type is NetCDF, because unstructured grids cannot be stored in GRIB format.

70

Reference manual

Comparison

2.5. Comparison

This section contains modules to compare datasets.

comparison is true and 0 if not.

Here is a short overview of all operators in this section:

eq
ne
le
It
ge
gt

eqc
nec
lec
Itc
gec
gtc

ymoneq
ymonne
ymonle
ymonlt
ymonge
ymongt

yseaseq
yseasne
yseasle
yseaslt
yseasge
yseasgt

Equal

Not equal
Less equal
Less than
Greater equal
Greater than

Equal constant

Not equal constant
Less equal constant
Less than constant
Greater equal constant
Greater than constant

Compare time series with Equal

Compare time series with NotEqual
Compare time series with LessEqual
Compares if time series with LessThan
Compares if time series with GreaterEqual
Compares if time series with GreaterThan

Compare time series with Equal

Compare time series with NotEqual
Compare time series with LessEqual
Compares if time series with LessThan
Compares if time series with GreaterEqual
Compares if time series with GreaterThan

The resulting field is a mask containing 1 if the

71

Comparison

Reference manual

2.5.1. COMP - Comparison of two fields

Synopsis

<operator> infilel infile2 outfile

Description

This module compares two datasets field by field. The resulting field is a mask containing 1 if the
comparison is true and 0 if not. The number of fields in infilel should be the same as in infile2.
One of the input files can contain only one timestep or one field. The fields in outfile inherit the
meta data from infilel or infile2. The type of comparison depends on the chosen operator.

Operators
eq Equal
1
o(t,x) = 0
miss
ne Not equal

1
o(t,x) = 0
miss

le Less equal
1
o(t,x) = 0
miss
It Less than
1
o(t,x) = 0
miss
ge Greater equal
1
o(t,x) = 0
miss
gt Greater than
1
o(t,x) = 0
miss
Example

if il(t,l') = ig(t, (E)
if 4q(¢t,x) # i2(t,)
if 41 (¢,) = miss

if il(t,.%‘) 75 ig(t, JJ)
if il(t,l‘) = ig(t, J})
if 41(¢,2) = miss

if il(tw) < ig(t,ai)
if il(t,.’L‘) > ig(t,af)
if 41(¢,z) = miss

if il(t,.’lf) < ig(t,ai)
if il(tw) > ig(t,af)
if 41(¢,2) = miss

if il(t,l‘) Z iz(t,l‘)
if il(t,l‘) < ig(t,.i?)
if 41(¢,x) = miss

if ’il(t,l') > iQ(f,CE)
if ’il(t,l') S ig(t,x)
if 41 (¢,) = miss

Z'1(157 LC), iQ(tv :E) 7é miss
Z'1(157 LC), iQ(tv £E) 7é miss
i9(t,x) = miss

11 (ta .Z'), Z-2(757 l‘) 7é miss
11 (ta x)a 7:2(757 l‘) 7& miss
i2(t, x) = miss

11 (ta ‘T)a 2.2(757 .’I,‘) 7é miss
11 (ta .Z'), 2.2(757 .’I,‘) 7é miss
i2(t, x) = miss

11 (ta ‘T)a i2(t7 .7,‘) 7é miss
11 (ta .’L’), 2.2(757 .’I,‘) 7é miss
i2(t, x) = miss

i1(t,), i2(t, ©) # miss
il(t, x), 12 (t, JL‘) 7é miss
i2(t, x) = miss

i1(t,x),i2(t, ¢) # miss
i1(t,x),i2(t, ¢) # miss
i9(t,x) = miss

To create a mask containing 1 if the elements of two fields are the same and 0 if the elements are
different use:

cdo eq infilel infile2 outfile

72

Reference manual Comparison

2.5.2. COMPC - Comparison of a field with a constant
Synopsis
<operator>,c infile outfile

Description

This module compares all fields of a dataset with a constant. The resulting field is a mask containing
1 if the comparison is true and 0 if not. The type of comparison depends on the chosen operator.

Operators
eqc Equal constant
1 if i(t,x)=c A i(t,x), c # miss
o(t,z) = 0 if i(t,z) #c A i(t,x), c # miss
miss if i(¢,z) = miss V ¢ = miss
nec Not equal constant
1 if i(t,x) #c A i(t,x), c # miss
o(t,x) = 0 if i(t,z)=c A i(t,x), c # miss
miss if (¢,z) = miss V ¢ = miss
lec Less equal constant
1 if i(t,x) <c A i(t,x), c # miss
o(t,z) = 0 if i(t,z) > c A i(t,x), c # miss
miss if (¢,z) = miss V ¢ = miss
Itc Less than constant
1 if i(t,x) <c A i(t,x), c # miss
o(t,z) = 0 if i(t,z) >c A i(t,x), c # miss
miss if i(f,z) = miss V ¢ = miss
gec Greater equal constant
1 ifi(t,x)>c A i(t,), c # miss
o(t,x) = 0 if i(t,z)<c A i(t,x), c # miss
miss if i(t,2) = miss V ¢ = miss
gtc Greater than constant
1 if i(t,x) > ¢ A i(t,x), c # miss
o(t,x) = 0 ifi(t,z)<c A i(t,x), c # miss
miss if (¢,z) = miss V ¢ = miss
Parameter
c FLOAT Constant
Example

To create a mask containing 1 if the field element is greater than 273.15 and 0 if not use:

cdo gtc,273.15 infile outfile

73

Comparison

Reference manual

2.5.3. YMONCOMP - Multi-year monthly comparison

Synopsis

<operator> infilel infile2 outfile

Description

This module performs comparisons of a time series and one timestep with the same month of year.
For each field in infilel the corresponding field of the timestep in infile2 with the same month of
year is used. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The
type of comparison depends on the chosen operator. The input files need to have the same structure
with the same variables. Usually infile2 is generated by an operator of the module YMONSTAT.

Operators

ymoneq
ymonne
ymonle
ymonlt

ymonge

ymongt

Compare time series with Equal
Compares whether a time series is equal to a multi-year monthly time series.

Compare time series with NotEqual
Compares whether a time series is not equal to a multi-year monthly time series.

Compare time series with LessEqual
Compares whether a time series is less than or equal to a multi-year monthly time series.

Compares if time series with LessThan
Compares whether a time series is less than a multi-year monthly time series.

Compares if time series with GreaterEqual
Compares whether a time series is greater than or equal to a multi-year monthly time
series.

Compares if time series with GreaterThan
Compares whether a time series is greater than a multi-year monthly time series.

74

Reference manual Comparison

2.5.4. YSEASCOMP - Multi-year seasonal comparison
Synopsis

<operator> infilel infile2 outfile

Description

This module performs comparisons of a time series and one timestep with the same season of year.
For each field in infilel the corresponding field of the timestep in infile2 with the same season of
year is used. The resulting field is a mask containing 1 if the comparison is true and 0 if not. The
type of comparison depends on the chosen operator. The input files need to have the same structure
with the same variables. Usually infile2 is generated by an operator of the module YseasSTAT.

Operators
yseaseq Compare time series with Equal
Compares whether a time series is equal to a multi-year seasonal time series.
yseasne Compare time series with NotEqual
Compares whether a time series is not equal to a multi-year seasonal time series.
yseasle Compare time series with LessEqual
Compares whether a time series is less than or equal to a multi-year seasonal time series.
yseaslt Compares if time series with LessThan
Compares whether a time series is less than a multi-year seasonal time series.
yseasge Compares if time series with GreaterEqual
Compares whether a time series is greater than or equal to a multi-year seasonal time
series.
yseasgt Compares if time series with GreaterThan

Compares whether a time series is greater than a multi-year seasonal time series.

75

Modification

Reference manual

2.6. Modification

This section contains modules to modify the metadata, fields or part of a field in a dataset.

Here is a short overview of all operators in this section:

setattribute
delattribute

setpartabp
setpartabn

setcodetab
setcode
setparam
setname
setstdname
setunit
setlevel
setltype
setmaxsteps

setdate
settime
setday
setmon
setyear
settunits
settaxis
settbounds
setreftime
setcalendar
shifttime

chcode
chparam
chname
chunit
chlevel
chlevelc
chlevelv

setgrid
setgridtype
setgridarea
setgridmask
setprojparams

setzaxis
genlevelbounds

invertlat
invertlev

shiftx
shifty

Set attributes
Delete attributes

Set parameter table
Set parameter table

Set parameter code table

Set code number

Set parameter identifier
Set variable name

Set standard name

Set variable unit

Set level

Set GRIB level type
Set max timesteps

Set date

Set time of the day
Set day

Set month

Set year

Set time units

Set time axis

Set time bounds
Set reference time
Set calendar

Shift timesteps

Change code number

Change parameter identifier
Change variable or coordinate name

Change variable unit
Change level

Change level of one code
Change level of one variable

Set grid

Set grid type
Set grid cell area
Set grid mask
Set proj params

Set z-axis
Generate level bounds

Invert latitudes
Invert levels

Shift x
Shift y

76

Reference manual

Modification

maskregion

masklonlatbox
maskindexbox

setclonlatbox
setcindexbox

enlarge

setmissval
setctomiss
setmisstoc
setrtomiss
setvrange
setmisstonn
setmisstodis

vertfillmiss
timfillmiss

setgridcell

Mask regions

Mask a longitude/latitude box
Mask an index box

Set a longitude/latitude box to constant
Set an index box to constant

Enlarge fields

Set a new missing value

Set constant to missing value

Set missing value to constant

Set range to missing value

Set valid range

Set missing value to nearest neighbor

Set missing value to distance-weighted average

Vertical filling of missing values
Temporal filling of missing values

Set the value of a grid cell

7

Modification Reference manual

2.6.1. SETATTRIBUTE - Set attributes

Synopsis

< operator >,attributes infile outfile

Description

This operator sets or deletes attributes of a dataset and writes the result to outfile. The new
attributes are only available in outfile if the file format supports attributes.

Each attribute has the following structure:

[var__nm@]Jatt__nm][:s|d|i]=[att__val|{[var__nm@]att_nm}]
var_nm Variable name (optional). Example: pressure
att_nm Attribute name. Example: units

att_ val Comma-separated list of attribute values. Example: pascal

The value of var__nm is the name of the variable containing the attribute (named att_ nm) that
you want to set. Use wildcards to set the attribute att_ nm to more than one variable. A value
of var_ nm of '*’ will set the attribute att_ nm to all data variables. If var_ nm is missing then
att__nm refers to a global attribute.

The value of att_nm is the name of the attribute you want to set. For each attribute a string
(att_nm:s), a double (att_nm:d) or an integer (att_nm:i) type can be defined. By default the native
type is set.

The value of att__val is the contents of the attribute att_ nm. att_ val may be a single value or
one-dimensional array of elements. The type and the number of elements of an attribute will be
detected automatically from the contents of the values. An already existing attribute att__nm will
be overwritten or it will be removed if att_ val is omitted. Alternatively, the values of an existing
attribute can be copied. This attribute must then be enclosed in curly brackets.

A special meaning has the attribute name FILE. If this is the 1st attribute then all attributes are
read from a file specified in the value of att_ val.

Operators

setattribute Set attributes

delattribute Delete attributes

Parameter

attributes STRING Comma-separated list of attributes.

Note

Attributes are evaluated by CDO when opening infile. Therefor the result of this operator is not
available for other operators when this operator is used in chaining operators.

78

Reference manual Modification

Example

To set the units of the variable pressure to pascal use:

cdo setattribute,pressure@units=pascal infile outfile

To set the global text attribute "my_att" to "my contents", use:

cdo setattribute,my_att="my contents" infile outfile

Result of 'ncdump -h outfile’:

netcdf outfile {
dimensions:

variables:

// global attributes:
:my_att = "my contents"
}

79

Modification

Reference manual

2.6.2. SETPARTAB - Set parameter table

Synopsis

<operator > table[,convert] infile outfile

Description

Operators
setpartabp
setpartabn

Parameter
table STRING
convert STRING

This module transforms data and metadata of infile via a parameter table and writes the result
to outfile. A parameter table is an ASCII formatted file with a set of parameter entries for each
variable. Each new set have to start with "¶meter" and to end with "/".

The following parameter table entries are supported:

Entry Type Description

name WORD Name of the variable

out_ name WORD New name of the variable

param WORD Parameter identifier (GRIB1: code[.tabnum]; GRIB2: num][.cat[.dis]])
out_ param WORD New parameter identifier

type WORD Data type (real or double)

standard_name WORD As defined in the CF standard name table

long name STRING Describing the variable

units STRING Specifying the units for the variable

comment STRING Information concerning the variable

cell _methods STRING Information concerning calculation of means or climatologies
cell _measures STRING Indicates the names of the variables containing cell areas and volumes
filterspec STRING NetCDF4 filter specification

missing_value FLOAT Specifying how missing data will be identified

valid_min FLOAT Minimum valid value

valid__max FLOAT Maximum valid value

ok min mean abs | FLOAT Minimum absolute mean

ok max mean abs | FLOAT Maximum absolute mean

factor FLOAT Scale factor

delete INTEGER. | Set to 1 to delete variable

convert INTEGER | Set to 1 to convert the unit if necessary

Unsupported parameter table entries are stored as variable attributes. The search key for the variable
depends on the operator. Use setpartabn to search variables by the name. This is typically used for
NetCDF datasets. The operator setpartabp searches variables by the parameter ID.

Set parameter table

Search variables by the parameter identifier.

Set parameter table

Search variables by name.

Parameter table file or name

Converts the units if necessary

80

Reference manual Modification

Example

Here is an example of a parameter table for one variable:

prompt> cat mypartab

¶meter
name = i
out_name = ta
standard_name = air_temperature
units = "K"
missing value = 1.0e+20
valid_min = 157.1
valid_max = 336.3

/

To apply this parameter table to a dataset use:

cdo setpartabn,mypartab,convert infile outfile

This command renames the variable t to ta. The standard name of this variable is set to air__temperature
and the unit is set to [K] (converts the unit if necessary). The missing value will be set to 1.0e+20.
In addition it will be checked whether the values of the variable are in the range of 157.1 to 336.3.

81

Modification

Reference manual

2.6.3. SET - Set field info

Synopsis

setcodetab,table infile outfile

setcode,code infile outfile

setparam,param infile outfile

setname,name infile outfile

setstdname,name infile outfile

setunit,unit infile outfile

setlevel,level infile outfile

setltype,ltype infile outfile

setmaxsteps,maxsteps infile outfile

Description

This module sets some field information. Depending on the chosen operator the parameter table,
code number, parameter identifier, variable name or level is set.

Operators

setcodetab Set parameter code table

Sets the parameter code table for all variables.
setcode Set code number

Sets the code number for all variables to the same given value.
setparam Set parameter identifier

Sets the parameter identifier of the first variable.
setname Set variable name

Sets the name of the first variable.
setstdname Set standard name

Sets the standard name of the first variable.
setunit Set variable unit

Sets the unit of the first variable.
setlevel Set level

Sets the first level of all variables.
setltype Set GRIB level type

Sets the GRIB level type of all variables.
setmaxsteps Set max timesteps

Sets maximum number of timesteps

Parameter

table STRING Parameter table file or name
code INTEGER Code number
param STRING Parameter identifier (GRIB1: code[.tabnum]; GRIB2: num][.cat[.dis]])
name STRING Variable name
level FLOAT New level
Itype INTEGER GRIB level type
maxsteps INTEGER Maximum number of timesteps

82

Reference manual

Modification

2.6.4. SETTIME - Set time

Synopsis

setdate,date infile outfile

settime,time infile outfile

setday,day infile outfile

setmon,month infile outfile

setyear,year infile outfile

settunits,units infile outfile

settaxis,date,timef,inc] infile outfile

settbounds,frequency infile outfile

setreftime,date,time[,units] infile outfile

setcalendar,calendar infile outfile

shifttime,shift Value infile outfile

Description

This module sets the time axis or part of the time axis. Which part of the time axis is overwrit-
ten/created depends on the chosen operator. The number of time steps does not change.

Operators

setdate
settime
setday
setmon
setyear
settunits
settaxis
settbounds
setreftime
setcalendar

shifttime

Set date
Sets the date in every timestep to the same given value.

Set time of the day
Sets the time in every timestep to the same given value.

Set day
Sets the day in every timestep to the same given value.

Set month
Sets the month in every timestep to the same given value.

Set year
Sets the year in every timestep to the same given value.

Set time units
Sets the base units of a relative time axis.

Set time axis
Sets the time axis.

Set time bounds
Sets the time bounds.

Set reference time
Sets the reference time of a relative time axis.

Set calendar
Sets the calendar attribute of a relative time axis.

Shift timesteps
Shifts all timesteps by the parameter shiftValue.

83

Modification Reference manual

Parameter
day INTEGER Value of the new day
month INTEGER Value of the new month
year INTEGER Value of the new year
units STRING Base units of the time axis (seconds|minutes|hours|days|months|years)
date STRING Date (format: YYYY-MM-DD)
time STRING Time (format: hh:mm:ss)
inc STRING Optional increment (seconds|minutes/hours|days|months|years) [default:
lhour]
frequency STRING Frequency of the time series (hour|day|month|year)
calendar STRING Calendar (standard|proleptic_ gregorian|360_ day|365_ day|366_ day)
shiftValue ~ STRING Shift value (e.g. -3hour)
Example

To set the time axis to 1987-01-16 12:00:00 with an increment of one month for each timestep use:

cdo settaxis,1987-01-16,12:00:00,1mon infile outfile

Result of 'cdo showdate outfile’ for a dataset with 12 timesteps:

1987—01—16 1987—02—16 1987—03—16 1987—04—16 1987—05—16 1987—06—16 \
1987—-07—16 1987—08—16 1987—09—16 1987—10—16 1987—11—-16 1987—12—-16

To shift this time axis by -15 days use:

cdo shifttime,-15days infile outfile

Result of ’cdo showdate outfile’:

1987—01—01 1987—02—01 1987—03—01 1987—04—01 1987—05—01 1987—06—01 \
1987—-07—01 1987—08—-01 1987—09—-01 1987—10—01 1987—11-01 1987—-12—-01

84

Reference manual Modification

2.6.5. CHANGE - Change field header
Synopsis

chcode,oldcode,newcodef,...] infile outfile
chparam oldparam,newparam,... infile outfile
chname,oldname,newname,... infile outfile
chunit,oldunit,newunit,... infile outfile
chlevel,oldlev,newlev,... infile outfile
chlevelc,code,oldlev,newlev infile outfile

chlevelv,name,oldlev,newlev infile outfile

Description

This module reads fields from infile, changes some header values and writes the results to outfile.
The kind of changes depends on the chosen operator.

Operators

chcode Change code number
Changes some user given code numbers to new user given values.

chparam Change parameter identifier
Changes some user given parameter identifiers to new user given values.

chname Change variable or coordinate name
Changes some user given variable or coordinate names to new user given names.

chunit Change variable unit
Changes some user given variable units to new user given units.

chlevel Change level
Changes some user given levels to new user given values.

chlevelc Change level of one code
Changes one level of a user given code number.

chlevelv Change level of one variable
Changes one level of a user given variable name.

Parameter
code INTEGER Code number
oldcode,newcode,... INTEGER Pairs of old and new code numbers
oldparam,newparam,... STRING Pairs of old and new parameter identifiers
name STRING Variable name
oldname,newname,... STRING Pairs of old and new variable names
oldlev FLOAT Old level
newlev FLOAT New level
oldlev,newlev,... FLOAT Pairs of old and new levels

Example

To change the code number 98 to 179 and 99 to 211 use:

cdo chcode,98,179,99,211 infile outfile

85

Modification

Reference manual

2.6.6. SETGRID - Set grid information

Synopsis

setgrid,grid infile outfile

setgridtype,gridtype infile outfile

setgridarea,gridarea infile outfile

setgridmask,gridmask infile outfile

setprojparams,projparams infile outfile

Description

This module modifies the metadata of the horizontal grid. Depending on the chosen operator a new
grid description is set, the coordinates are converted or the grid cell area is added.

Operators

setgrid

setgridtype

setgridarea

setgridmask

setprojparams

Set grid
Sets a new grid description. The input fields need to have the same grid size as
the size of the target grid description.

Set grid type
Sets the grid type of all input fields. The following grid types are available:

curvilinear Converts a regular grid to a curvilinear grid

unstructured Converts a regular or curvilinear grid to an unstructured grid
dereference Dereference a reference to a grid

regular Linear interpolation of a reduced Gaussian grid to a regular

Gaussian grid

regularnn Nearest neighbor interpolation of a reduced Gaussian grid to
a regular Gaussian grid

lonlat Converts a regular lonlat grid stored as a curvilinear grid back
to a lonlat grid

projection Removes the geographical coordinates if projection parameter
available

Set grid cell area

Sets the grid cell area. The parameter gridarea is the path to a data file, the
first field is used as grid cell area. The input fields need to have the same grid
size as the grid cell area. The grid cell area is used to compute the weights of
each grid cell if needed by an operator, e.g. for fldmean.

Set grid mask

Sets the grid mask. The parameter gridmask is the path to a data file, the first
field is used as the grid mask. The input fields need to have the same grid size
as the grid mask. The grid mask is used as the target grid mask for remapping,
e.g. for remapbil.

Set proj params
Sets the proj_params attribute of a projection. This attribute is used to compute
geographic coordinates of a projecton with the proj library.

86

Reference manual

Modification

Parameter
grid

gridtype

gridarea
gridmask

projparams

Example

STRING

STRING
erence)

STRING
STRING
STRING

Grid description file or name

Grid type (curvilinear, unstructured, regular, lonlat, projection or deref-

Data file, the first field is used as grid cell area
Data file, the first field is used as grid mask
Proj library parameter (e.g.:+init=EPSG:3413)

Assuming a dataset has fields on a grid with 2048 elements without or with wrong grid description.
To set the grid description of all input fields to a regular Gaussian F32 grid (8192 gridpoints) use:

cdo setgrid,F32 infile outfile

2.6.7. SETZAXIS - Set z-axis information

Synopsis

setzaxis,zaxis infile outfile

genlevelbounds|[,zbot[,ztop]] infile outfile

Description

This module modifies the metadata of the vertical grid.

Operators

setzaxis

genlevelbounds

Parameter

Set z-axis
This operator sets the z-axis description of all variables with the same number

O

f level as the new z-axis.

Generate level bounds

Generates the layer bounds of the z-axis.

zaxis STRING

zbot FLOAT

z-axis.

ztop FLOAT

Z-axis description file or name of the target z-axis

Specifying the bottom of the vertical column. Must have the same units as

Specifying the top of the vertical column. Must have the same units as z-axis.

87

Modification

Reference manual

2.6.8. INVERT - Invert latitudes
Synopsis

invertlat infile outfile

Description

This operator inverts the latitudes of all fields on a rectilinear grid.

Example

To invert the latitudes of a 2D field from N->S to S->N use:

cdo invertlat infile outfile

2.6.9. INVERTLEV - Invert levels
Synopsis

invertlev infile outfile

Description

This operator inverts the levels of all 3D variables.

88

Reference manual Modification

2.6.10. SHIFTXY - Shift field
Synopsis

<operator >,<nshift>,<cyclic>,<coord> infile outfile

Description

This module contains operators to shift all fields in x or y direction. All fields need to have the same
horizontal rectilinear or curvilinear grid.

Operators
shiftx Shift x
Shifts all fields in x direction.

shifty Shift y
Shifts all fields in y direction.

Parameter
nshift INTEGER Number of grid cells to shift (default: 1)

cyclic STRING If set, cells are filled up cyclic (default: missing value)
coord STRING If set, coordinates are also shifted
Example

To shift all input fields in the x direction by +1 cells and fill the new cells with missing value, use:

cdo shiftx infile outfile

To shift all input fields in the x direction by +1 cells and fill the new cells cyclic, use:

cdo shiftx,1,cyclic infile outfile

89

Modification Reference manual

2.6.11. MASKREGION - Mask regions

Synopsis

maskregion,regions infile outfile

Description

Masks different regions of the input fields. The grid cells inside a region are untouched, the cells
outside are set to missing value. Considered are only those grid cells with the grid center inside the
regions. All input fields must have the same horizontal grid.

Regions can be defined by the user via an ASCII file. Each region consists of the geographic coordinates
of a polygon. Each line of a polygon description file contains the longitude and latitude of one point.
Each polygon description file can contain one or more polygons separated by a line with the character

&.

Predefined regions of countries can be specified via the country codes. A country is specified with
dew:<CountryCode>. Country codes can be combined with the plus sign.

Parameter

regions STRING Comma-separated list of ASCII formatted files with different regions

Example

To mask the region with the longitudes from 120E to 90W and latitudes from 20N to 20S on all input
fields use:

cdo maskregion,myregion infile outfile

For this example the description file of the region myregion should contain one polygon with the
following four coordinates:

120 20
120 —20
270 —20
270 20

To mask the region of a country use the country code with data from the Digital Chart of the World.
Here is an example for Spain with the country code ES:

cdo maskregion,dcw:ES infile outfile

90

Reference manual Modification

2.6.12. MASKBOX - Mask a box
Synopsis

masklonlatbox,lonl,lon2,latl,lat2 infile outfile

maskindexbox,idx1,idx2,idyl,idy2 infile outfile

Description

Masks grid cells inside a lon/lat or index box. The elements inside the box are untouched, the
elements outside are set to missing value. All input fields need to have the same horizontal grid. Use
sellonlatbox or selindexbox if only the data inside the box are needed.

Operators

masklonlatbox Mask a longitude/latitude box
Masks grid cells inside a lon/lat box. The user must specify the longitude and
latitude of the edges of the box. Only those grid cells are considered whose grid
center lies within the lon/lat box. For rotated lon/lat grids the parameters must
be specified in rotated coordinates.

maskindexbox Mask an index box
Masks grid cells within an index box. The user must specify the indices of the
edges of the box. The index of the left edge can be greater then the one of the
right edge. Use negative indexing to start from the end. The input grid must
be a regular lon/lat or a 2D curvilinear grid.

Parameter
lonl FLOAT Western longitude
lon2 FLOAT Eastern longitude
lat1 FLOAT Southern or northern latitude
lat2 FLOAT Northern or southern latitude

idx1 INTEGER Index of first longitude
idx2 INTEGER Index of last longitude
idyl INTEGER Index of first latitude
idy2 INTEGER Index of last latitude

Example

To mask the region with the longitudes from 120E to 90W and latitudes from 20N to 20S on all input
fields use:

cdo masklonlatbox,120,-90,20,-20 infile outfile

If the input dataset has fields on a regular Gaussian F16 grid, the same box can be masked with
maskindexbox by:

cdo maskindexbox,23,48,13,20 infile outfile

91

Modification Reference manual

2.6.13. SETBOX - Set a box to constant
Synopsis

setclonlatbox,c,lonl,lon2,latl,lat2 infile outfile

setcindexbox,c,idx1,idx2,idyl,idy2 infile outfile

Description

Sets a box of the rectangularly understood field to a constant value. The elements outside the box
are untouched, the elements inside are set to the given constant. All input fields need to have the
same horizontal grid.

Operators
setclonlatbox Set a longitude/latitude box to constant
Sets the values of a longitude/latitude box to a constant value. The user has to
give the longitudes and latitudes of the edges of the box.
setcindexbox Set an index box to constant
Sets the values of an index box to a constant value. The user has to give the
indices of the edges of the box. The index of the left edge can be greater than the
one of the right edge.
Parameter
c FLOAT Constant
lon1l FLOAT Western longitude
lon2 FLOAT Eastern longitude
lat1 FLOAT Southern or northern latitude
lat2 FLOAT Northern or southern latitude

idx1 INTEGER Index of first longitude
idx2 INTEGER Index of last longitude
idyl INTEGER Index of first latitude
idy2 INTEGER Index of last latitude

Example

To set all values in the region with the longitudes from 120E to 90W and latitudes from 20N to 20S
to the constant value -1.23 use:

cdo setclonlatbox,-1.23,120,-90,20,-20 infile outfile

If the input dataset has fields on a regular Gaussian F16 grid, the same box can be set with setcin-
dexbox by:

cdo setcindexbox,-1.23,23,48,13,20 infile outfile

92

Reference manual Modification

2.6.14. ENLARGE - Enlarge fields
Synopsis

enlarge,grid infile outfile

Description

Enlarge all fields of infile to a user given horizontal grid. Normally only the last field element is
used for the enlargement. If however the input and output grid are regular lon/lat grids, a zonal or
meridional enlargement is possible. Zonal enlargement takes place, if the xsize of the input field is 1
and the ysize of both grids are the same. For meridional enlargement the ysize have to be 1 and the
xsize of both grids should have the same size.

Parameter

grid STRING Target grid description file or name

Example

Assumed you want to add two datasets. The first dataset is a field on a global grid (n field elements)
and the second dataset is a global mean (1 field element). Before you can add these two datasets the
second dataset have to be enlarged to the grid size of the first dataset:

cdo enlarge,infilel infile2 tmpfile
cdo add infilel tmpfile outfile

Or shorter using operator piping:

cdo add infilel -enlarge,infilel infile2 outfile

93

Modification

Reference manual

2.6.15. SETMISS - Set missing value

Synopsis

setmissval newmiss infile outfile

setctomiss,c

setmisstoc,c

infile outfile

infile outfile

setrtomiss,rmin,rmax infile outfile

setvrange,rmin,rmax infile outfile

setmisstonn

setmisstodis

Description

infile outfile

[,neighbors] infile outfile

This module sets part of a field to missing value or missing values to a constant value. Which part of
the field is set depends on the chosen operator.

Operators

setmissval

setctomiss

setmisstoc

setrtomiss

setvrange

setmisstonn

setmisstodis

Parameter

neighbors
newimiss
c

rmin

rmax

Set a new missing value

oft, z) = newmiss %f z-(t,x) = miss
i(t,x) if i(t,x) # miss

Set constant to missing value
miss if i(t,z) =c

tr) =9 . o0y

oft,) { i(t,x) if i(t,x) # ¢

Set missing value to constant

oftz) =4 | c %f ?(t,x) = miss
i(t,x) if i(t,x) # miss

Set range to missing value

oft, z) = miss if i(t,x) > rmin A i(t, z) < rmax
’ i(t,r) if i(t,xz) < rmin Vi(t,z) > rmax

Set valid range

oft,) = miss if i(t,z) < rminV i(t,z) > rmax
Uit x) if it x) > rmin Ad(t, @) < rmax

Set missing value to nearest neighbor

Set all missing values to the nearest non missing value.

oft,z) = { i(t,y) if i(t,z) = miss A i(t,y) # miss

i(t,z) if i(t,z) # miss

Set missing value to distance-weighted average

Set all missing values to the distance-weighted average of the nearest non missing

values. The default number of nearest neighbors is 4.

INTEGER Number of nearest neighbors

FLOAT New missing value
FLOAT Constant

FLOAT Lower bound
FLOAT Upper bound

94

Reference manual Modification

Example
setrtomiss

Assume an input dataset has one field with temperatures in the range from 246 to 304 Kelvin. To set
all values below 273.15 Kelvin to missing value use:

cdo setrtomiss,0,273.15 infile outfile

Result of ’cdo info infile’:

-1 : Date Time Code Level Size Miss : Minimum Mean Maximum
1 : 1987—12—31 12:00:00 139 0 2048 0 : 246.27 276.75 303.71

Result of 'cdo info outfile’:

-1 : Date Time Code Level Size Miss : Minimum Mean Maximum
1 : 1987—12—31 12:00:00 139 0 2048 871 : 273.16 287.08 303.71
setmisstonn

Set all missing values to the nearest non missing value:

cdo setmisstonn infile outfile

Below is a schematic illustration of this example:

-20° 20° 60° -20° 20° 60°

On the left side is input data with missing values in grey and on the right side the result with the
filled missing values.

95

Modification Reference manual

2.6.16. VERTFILLMISS - Vertical filling of missing values
Synopsis

vertfillmiss[parameter] infile outfile

Description

This operator fills in vertical missing values. The method parameter can be used to select the filling
method. The default method=nearest fills missing values with the nearest neighbor value. Other
options are forward and backward to fill missing values by forward or backward propagation of
values. Use the limit parameter to set the maximum number of consecutive missing values to fill and
max__gaps to set the maximum number of gaps to fill.

Parameter
method STRING Fill method [nearest|linear|forward|backward] (default: nearest)
limit INTEGER The maximum number of consecutive missing values to fill (default: all)

max_gaps INTEGER The maximum number of gaps to fill (default: all)

2.6.17. TIMFILLMISS - Temporal filling of missing values
Synopsis

timfillmiss[,parameter] infile outfile

Description

This operator fills in temporally missing values. The method parameter can be used to select the
filling method. The default method=nearest fills missing values with the nearest neighbor value.
Other options are forward and backward to fill missing values by forward or backward propagation
of values. Use the limit parameter to set the maximum number of consecutive missing values to fill
and max_gaps to set the maximum number of gaps to fill.

Parameter
method STRING Fill method [nearest|linear|forward|backward] (default: nearest)
limit INTEGER The maximum number of consecutive missing values to fill (default: all)

max_gaps INTEGER The maximum number of gaps to fill (default: all)

96

Reference manual Modification

2.6.18. SETGRIDCELL - Set the value of a grid cell
Synopsis
setgridcell,parameter infile outfile

Description

This operator sets the value of the selected grid cells. The grid cells can be selected by a comma-
separated list of grid cell indices or a mask. The mask is read from a data file, which may contain
only one field. If no grid cells are selected, all values are set.

Parameter
value FLOAT Value of the grid cell
cell INTEGER Comma-separated list of grid cell indices
mask STRING Name of the data file which contains the mask

97

Arithmetic

Reference manual

2.7. Arithmetic

This section contains modules to arithmetically process datasets.

Here is a short overview of all operators in this section:

expr
exprf
aexpr
aexprf

abs
int
nint
pow
sqr
sqrt
exp
In
log10
sin
cos
tan
asin
acos
atan
reci
not

addc
subc
mulc
dive
minc
maxc

add
sub
mul
div
min
max
atan2
setmiss

dayadd
daysub
daymul
daydiv

monadd
monsub
monmul
mondiv

Evaluate expressions

Evaluate expressions script

Evaluate expressions and append results
Evaluate expression script and append results

Absolute value
Integer value
Nearest integer value
Power

Square

Square root
Exponential
Natural logarithm
Base 10 logarithm
Sine

Cosine

Tangent

Arc sine

Arc cosine

Arc tangent
Reciprocal value
Logical NOT

Add a constant

Subtract a constant

Multiply with a constant

Divide by a constant

Minimum of a field and a constant
Maximum of a field and a constant

Add two fields

Subtract two fields
Multiply two fields
Divide two fields
Minimum of two fields
Maximum of two fields
Arc tangent of two fields
Set missing values

Add daily time series
Subtract daily time series
Multiply daily time series
Divide daily time series

Add monthly time series
Subtract monthly time series
Multiply monthly time series
Divide monthly time series

98

Reference manual

Arithmetic

yearadd
yearsub
yearmul
yeardiv

yhouradd
yhoursub
yhourmul
yhourdiv

ydayadd
ydaysub
ydaymul
ydaydiv

ymonadd
ymonsub
ymonmul
ymondiv

yseasadd
yseassub
yseasmul
yseasdiv

muldpm
divdpm
muldpy
divdpy

mulcoslat
divcoslat

Add yearly time series
Subtract yearly time series
Multiply yearly time series
Divide yearly time series

Add multi-year hourly time series
Subtract multi-year hourly time series
Multiply multi-year hourly time series
Divide multi-year hourly time series

Add multi-year daily time series
Subtract multi-year daily time series
Multiply multi-year daily time series
Divide multi-year daily time series

Add multi-year monthly time series
Subtract multi-year monthly time series
Multiply multi-year monthly time series
Divide multi-year monthly time series

Add multi-year seasonal time series
Subtract multi-year seasonal time series
Multiply multi-year seasonal time series
Divide multi-year seasonal time series

Multiply with days per month
Divide by days per month
Multiply with days per year
Divide by days per year

Multiply with the cosine of the latitude
Divide by cosine of the latitude

99

Arithmetic Reference manual

2.7.1. EXPR - Evaluate expressions
Synopsis

expr,instr infile outfile
exprf filename infile outfile
aexpr,instr infile outfile

aexprf filename infile outfile

Description

This module arithmetically processes every timestep of the input dataset. Each individual assignment
statement have to end with a semi-colon. The special key _ ALL__ is used as a template. A statement
with a template is replaced for all variable names. Unlike regular variables, temporary variables are
never written to the output stream. To define a temporary variable simply prefix the variable name
with an underscore (e.g. _ varname) when the variable is declared.

The following operators are supported:

Operator | Meaning Example | Result

= assignment X=y Assigns y to x

+ addition X+y Sum of x and y

- subtraction X-y Difference of x and y

* multiplication x*y Product of x and y

/ division x/y Quotient of x and y

- exponentiation x "y Exponentiates x with y

== equal to X == 1, if x equal to y; else 0

1= not equal to xl=y 1, if x not equal to y; else 0

> greater than X >y 1, if x greater than y; else 0

< less than x<y 1, if x less than y; else 0

>= greater equal X >=y 1, if x greater equal y; else 0

< less equal X <=y 1, if x less equal y; else 0

<=> less equal greater x <=>y | -1,if xless y; 1, if x greater y; else 0
&& logical AND x && y 1, if x and y not equal 0; else 0
[l logical OR x|y 1, if x or y not equal 0; else 0

! logical NOT Ix 1, if x equal 0; else 0

7. ternary conditional | x 7 y : z y, if x not equal 0, else z

The following functions are supported:

Math intrinsics:

abs(x) Absolute value of x

floor(x) Round to largest integral value not greater than x
ceil(x) Round to smallest integral value not less than x
float(x) 32-bit float value of x

int(x) Integer value of x

nint(x) Nearest integer value of x

sqr(x) Square of x

sqrt(x) Square Root of x

exp(x) Exponential of x

100

Reference manual

Arithmetic

In(x)
log10(x)
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
sinh(x)
cosh(x)
tanh(x)
asinh(x)
acosh(x)
atanh(x)
rad(x)
deg(x)
rand(x)
isMissval(x)
mod(x,y)
min(x,y)
max(x,y)
pow(x,y)
hypot(x,y)
atan2(x,y)
Coordinates:
clon(x)
clat(x)
gridarea(x)
gridindex(x)
clev(x)
clevidx(x)
cthickness(x)
ctimestep()
cdate()
ctime()
cdeltat()

cday()
cmonth()

Natural logarithm of x

Base 10 logarithm of x

Sine of x, where x is specified in radians

Cosine of x, where x is specified in radians

Tangent of x, where x is specified in radians

Arc-sine of x, where x is specified in radians

Arc-cosine of x, where x is specified in radians

Arc-tangent of x, where x is specified in radians

Hyperbolic sine of x, where x is specified in radians
Hyperbolic cosine of x, where x is specified in radians
Hyperbolic tangent of x, where x is specified in radians
Inverse hyperbolic sine of x, where x is specified in radians
Inverse hyperbolic cosine of x, where x is specified in radians
Inverse hyperbolic tangent of x, where x is specified in radians
Convert x from degrees to radians

Convert x from radians to degrees

Replace x by pseudo-random numbers in the range of 0 to 1
Returns 1 where x is missing

Floating-point remainder of x/ y

Minimum value of x and y

Maximum value of x and y

Power function

Euclidean distance function, sqrt(x*x + y*y)

Arc tangent function of y/x, using signs to determine quadrants

Longitude coordinate of x (available only if x has geographical coordinates)
Latitude coordinate of x (available only if x has geographical coordinates)
Grid cell area of x (available only if x has geographical coordinates)

Grid cell indices of x

Level coordinate of x (0, if x is a 2D surface variable)

Level index of x (0, if x is a 2D surface variable)

Layer thickness, upper minus lower level bound of x (1, if level bounds are missing)
Timestep number (1 to N)

Verification date as YYYYMMDD

Verification time as HHMMSS. . millisecond

Difference between current and last timestep in seconds

Day as DD

Month as MM

101

Arithmetic Reference manual

cyear() Year as YYYY

csecond() Second as SS.millisecond

cminute() Minute as MM

chour() Hour as HH

Constants:

ngp(x) Number of horizontal grid points

nlev(x) Number of vertical levels

size(x) Total number of elements (ngp(x)*nlev(x))
missval(x) Returns the missing value of variable x

Statistics over a field:

fldmin(x), fldmax(x), fldrange(x), fldsum(x), fldmean(x), fldavg(x), fldstd(x), fldstd1(x), fldvar(x),
fldvarl(x), fldskew(x), fldkurt(x), fldmedian(x)

Zonal statistics for regular 2D grids:

zonmin(x), zonmax(x), zonrange(x), zonsum(x), zonmean(x), zonavg(x), zonstd(x), zonstd1(x), zon-
var(x), zonvarl(x), zonskew(x), zonkurt(x), zonmedian(x)

Vertical statistics:

vertmin(x), vertmax(x), vertrange(x), vertsum(x), vertmean(x), vertavg(x), vertstd(x), vertstd1(x),
vertvar(x), vertvarl(x)

Miscellaneous:
sellevel(x,k) Select level k of variable x
sellevidx(x,k) Select level index k of variable x
sellevelrange(x,k1,k2) Select all levels of variable x in the range k1 to k2
sellevidxrange(x,k1,k2) Select all level indices of variable x in the range k1 to k2
remove(x) Remove variable x from output stream
Operators
expr Evaluate expressions

The processing instructions are read from the parameter.

exprf Evaluate expressions script
Contrary to expr the processing instructions are read from a file.

aexpr Evaluate expressions and append results
Same as expr, but keep input variables and append results

aexprf Evaluate expression script and append results
Same as exprf, but keep input variables and append results

Parameter
instr STRING Processing instructions (need to be ’quoted’ in most cases)
filename STRING File with processing instructions

Note

If the input stream contains duplicate entries of the same variable name then the last one is used.

102

Reference manual Arithmetic

Example

Assume an input dataset contains at least the variables ’aprl’, ’aprc’ and 'ts’. To create a new variable
'varl’ with the sum of ’aprl’ and ’aprc’ and a variable 'var2’ which convert the temperature ’ts’ from
Kelvin to Celsius use:

cdo expr,’varl=aprl+aprc;var2=ts-273.15;’ infile outfile

The same example, but the instructions are read from a file:

cdo exprf,myexpr infile outfile

The file myexpr contains:

varl = aprl + aprc;
var2 = ts — 273.15;

103

Arithmetic Reference manual

2.7.2. MATH - Mathematical functions
Synopsis
<operator> infile outfile

Description

This module contains some standard mathematical functions. All trigonometric functions calculate
with radians.

Operators
abs Absolute value
o(t,x) = abs(i(t,z))
int Integer value
o(t,z) = int(i(t, z))
nint Nearest integer value
o(t,z) = nint(i(t, x))
pow Power
o(t,x) = i(t,z)?
sqr Square
o(t,x) = i(t,x)*
sqrt Square root
oft,z) = \/i(t, z)
exp Exponential
o(t,x) = ei(t:2)
In Natural logarithm

o(t,x) = In(i(t, z))
log10 Base 10 logarithm

o(t,x) =logy(i(t, x))
sin Sine

o(t,x) = sin(i(t, z))
cos Cosine

o(t,x) = cos(i(t,x))
tan Tangent

o(t,z) = tan(i(t, x))
asin Arc sine

o(t,z) = arcsin(i(t, z))
acos Arc cosine

o(t,x) = arccos(i(t, x))

atan Arc tangent
o(t,x) = arctan(i(t, z))

reci Reciprocal value
o(t,x) = 1/i(t, x)
not Logical NOT

o(t,x) = 1,ifrequall;elsed

104

Reference manual Arithmetic

Example

To calculate the square root for all field elements use:

cdo sqrt infile outfile

105

Arithmetic Reference manual

2.7.3. ARITHC - Arithmetic with a constant
Synopsis

<operator>,c infile outfile

Description

This module performs simple arithmetic with all field elements of a dataset and a constant. The fields
in outfile inherit the meta data from infile.

Operators
addc Add a constant
o(t,x) =i(t,x) + ¢

subc Subtract a constant
o(t,x) =i(t,x) —c

mulc Multiply with a constant
o(t,x) =i(t,x) *c

dive Divide by a constant
o(t,x) =i(t,x)/c

minc Minimum of a field and a constant
o(t,z) = min(i(t, x),c)

maxc Maximum of a field and a constant
o(t,x) = max(i(t,x),c)

Parameter

c FLOAT Constant

Example

To sum all input fields with the constant -273.15 use:

cdo addc,-273.15 infile outfile

106

Reference manual Arithmetic

2.7.4. ARITH - Arithmetic on two datasets
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of two datasets. The number of fields in infilel should be
the same as in infile2. The fields in outfile inherit the meta data from infilel. All operators in
this module simply process one field after the other from the two input files. Neither the order of the
variables nor the date is checked. One of the input files can contain only one timestep or one variable.

Operators
add Add two fields
o(t,x) =i1(t,x) + i2(t, x)
sub Subtract two fields
O(t7 LC) = il(tv ZL’) - iQ(tv iE)
mul Multiply two fields
O(tv x) = Z.1(267 l‘) * i2(ta .Z‘)
div Divide two fields
o(t,x) =i1(t,) /ia(t, x)
min Minimum of two fields
o(t,x) = min(iy (¢, z),i2(t, x))
max Maximum of two fields
o(t,) = max (i1 (t, x),ia(t, z))
atan2 Arc tangent of two fields
The atan2 operator calculates the arc tangent of two fields. The result is in radians,
which is between -PI and PI (inclusive).
o(t,x) = atan2(i1 (¢,), i (¢, x))
setmiss Set missing values
Sets missing values of infilel to values from infile2.
Example

To sum all fields of the first input file with the corresponding fields of the second input file use:

cdo add infilel infile2 outfile

107

Arithmetic Reference manual

2.7.5. DAYARITH - Daily arithmetic
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same day, month
and year. For each field in infilel the corresponding field of the timestep in infile2 with the same
day, month and year is used. The input files need to have the same structure with the same variables.
Usually infile2 is generated by an operator of the module DAYSTAT.

Operators
dayadd Add daily time series
Adds a time series and a daily time series.

daysub Subtract daily time series
Subtracts a time series and a daily time series.

daymul Multiply daily time series
Multiplies a time series and a daily time series.

daydiv Divide daily time series
Divides a time series and a daily time series.

Example

To subtract a daily time average from a time series use:

cdo daysub infile -dayavg infile outfile

108

Reference manual Arithmetic

2.7.6. MONARITH - Monthly arithmetic
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same month and
year. For each field in infilel the corresponding field of the timestep in infile2 with the same
month and year is used. The input files need to have the same structure with the same variables.
Usually infile? is generated by an operator of the module MONSTAT.

Operators
monadd Add monthly time series
Adds a time series and a monthly time series.
monsub Subtract monthly time series
Subtracts a time series and a monthly time series.
monmul Multiply monthly time series
Multiplies a time series and a monthly time series.
mondiv Divide monthly time series
Divides a time series and a monthly time series.
Example

To subtract a monthly time average from a time series use:

cdo monsub infile -monavg infile outfile

109

Arithmetic Reference manual

2.7.7. YEARARITH - Yearly arithmetic
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same year. For
each field in infilel the corresponding field of the timestep in infile2 with the same year is used.
The header information in infilel have to be the same as in infile2. Usually infile2 is generated
by an operator of the module YEARSTAT.

Operators
yearadd Add yearly time series
Adds a time series and a yearly time series.

yearsub Subtract yearly time series
Subtracts a time series and a yearly time series.

yearmul Multiply yearly time series
Multiplies a time series and a yearly time series.

yeardiv Divide yearly time series
Divides a time series and a yearly time series.

Example

To subtract a yearly time average from a time series use:

cdo yearsub infile -yearavg infile outfile

110

Reference manual Arithmetic

2.7.8. YHOURARITH - Multi-year hourly arithmetic
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same hour and
day of year. For each field in infilel the corresponding field of the timestep in infile2 with the
same hour and day of year is used. The input files need to have the same structure with the same
variables. Usually infile2 is generated by an operator of the module YHOURSTAT.

Operators
yhouradd Add multi-year hourly time series
Adds a time series and a multi-year hourly time series.

yhoursub Subtract multi-year hourly time series
Subtracts a time series and a multi-year hourly time series.

yhourmul Multiply multi-year hourly time series
Multiplies a time series and a multi-year hourly time series.

yhourdiv Divide multi-year hourly time series
Divides a time series and a multi-year hourly time series.

Example

To subtract a multi-year hourly time average from a time series use:

cdo yhoursub infile -yhouravg infile outfile

111

Arithmetic

Reference manual

2.7.9. YDAYARITH - Multi-year daily arithmetic

Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same day of year.
For each field in infilel the corresponding field of the timestep in infile2 with the same day of year
is used. The input files need to have the same structure with the same variables. Usually infile?2 is
generated by an operator of the module YDAYSTAT.

Operators

ydayadd
ydaysub
ydaymul

ydaydiv

Example

Add multi-year daily time series
Adds a time series and a multi-year daily time series.

Subtract multi-year daily time series
Subtracts a time series and a multi-year daily time series.

Multiply multi-year daily time series
Multiplies a time series and a multi-year daily time series.

Divide multi-year daily time series
Divides a time series and a multi-year daily time series.

To subtract a multi-year daily time average from a time series use:

cdo ydaysub infile -ydayavg infile outfile

112

Reference manual Arithmetic

2.7.10. YMONARITH - Multi-year monthly arithmetic
Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same month of
year. For each field in infilel the corresponding field of the timestep in infile2 with the same
month of year is used. The input files need to have the same structure with the same variables.
Usually infile? is generated by an operator of the module YMONSTAT.

Operators
ymonadd Add multi-year monthly time series
Adds a time series and a multi-year monthly time series.
ymonsub Subtract multi-year monthly time series
Subtracts a time series and a multi-year monthly time series.
ymonmul Multiply multi-year monthly time series
Multiplies a time series with a multi-year monthly time series.
ymondiv Divide multi-year monthly time series
Divides a time series by a multi-year monthly time series.
Example

To subtract a multi-year monthly time average from a time series use:

cdo ymonsub infile -ymonavg infile outfile

113

Arithmetic

Reference manual

2.7.11. YSEASARITH - Multi-year seasonal arithmetic

Synopsis

<operator> infilel infile2 outfile

Description

This module performs simple arithmetic of a time series and one timestep with the same season. For
each field in infilel the corresponding field of the timestep in infile2 with the same season is
used. The input files need to have the same structure with the same variables. Usually infile2 is
generated by an operator of the module YSEASSTAT.

Operators

yseasadd
yseassub
yseasmul

yseasdiv

Example

Add multi-year seasonal time series
Adds a time series and a multi-year seasonal time series.

Subtract multi-year seasonal time series
Subtracts a time series and a multi-year seasonal time series.

Multiply multi-year seasonal time series
Multiplies a time series and a multi-year seasonal time series.

Divide multi-year seasonal time series
Divides a time series and a multi-year seasonal time series.

To subtract a multi-year seasonal time average from a time series use:

cdo yseassub infile -yseasavg infile outfile

114

Reference manual Arithmetic

2.7.12. ARITHDAYS - Arithmetic with days
Synopsis

<operator> infile outfile

Description

This module multiplies or divides each timestep of a dataset with the corresponding days per month
or days per year. The result of these functions depends on the used calendar of the input data.

Operators
muldpm Multiply with days per month
o(t,x) = i(t,x) * days_per_month

divdpm Divide by days per month
o(t,x) =i(t,x)/days_per_month

muldpy Multiply with days per year
o(t,z) = i(t, x) * days_per__year

divdpy Divide by days per year
o(t,x) = i(t,x)/days_per_year

2.7.13. ARITHLAT - Arithmetic with latitude
Synopsis
<operator> infile outfile
Description
This module multiplies or divides each field element with the cosine of the latitude.

Operators

mulcoslat Multiply with the cosine of the latitude
o(t,x) = i(t, x) * cos(latitude(x))

divcoslat Divide by cosine of the latitude
o(t,x) =i(t,x)/cos(latitude(x))

115

Statistical values Reference manual

2.8. Statistical values

This section contains modules to compute statistical values of datasets. In this program there is the dif-
ferent notion of "mean" and "average' to distinguish two different kinds of treatment of missing values.
While computing the mean, only the not missing values are considered to belong to the sample with the
side effect of a probably reduced sample size. Computing the average is just adding the sample members
and divide the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1+2+3)/3 = 2,
whereas the average is (1+24miss+3)/4 = miss/4 = miss. If there are no missing values in the sample,
the average and the mean are identical.

CDO is using the verification time to identify the time range for temporal statistics. The time bounds are
never used!

In this section the abbreviations as in the following table are used:

sum E X

=1
n
mean resp. avg 1 Z 2
. i=1
mean resp. avg n -t
weighted by Z w; Z w; X;
{w;,i=1,...,n} j=1 i=1
Variance -
-1 a2
var n ;(xz T)
n
varl (n—1)"") (x; — 1)
i=1
-1 -1 2
var weig ted by Z w; Zwi o Z w; Z w, @
{w;,i =1,...,n} et — = =
Standard deviation n
std n=t Z(xl —7)?
s i=1

std1 (n — 1)*12(% —)2

i=1
-1 -1 2
std weighted by = = = =
{wi,i=1,...,n} 2w | Dowi|wi— | owi]| D owia
v v j=1 i=1 j=1 j=1
n+1 if n is odd

T

median 17 .
= (zn + 22 if n is even
2 ([L’g 2+1)

116

Reference manual

Statistical values

Skewness Yo i(x —T)/n
skew s3
Kurtosis E?_l(l‘i —z)'/n
kurt st
Cumulative Ranked o
e 2
Probability Score / [H(xz1) —cdf ({z2...xn})|] dr
crps e

with cdf (X)], being the cumulative distribution function of {x;,i =2...n} at r

and H(z) the Heavyside function jumping at x.

Here is a short overview of all operators in this section:

timcumsum Cumulative sum over all timesteps
consecsum Consecutive Sum

consects Consecutive Timesteps

varsmin Variables minimum

varsmax Variables maximum

varsrange Variables range

varssum Variables sum

varsmean Variables mean

varsavg Variables average

varsstd Variables standard deviation
varsstdl Variables standard deviation (n-1)
varsvar Variables variance

varsvarl Variables variance (n-1)

ensmin Ensemble minimum

ensmax Ensemble maximum

ensrange Ensemble range

enssum Ensemble sum

ensmean Ensemble mean

ensavg Ensemble average

ensstd Ensemble standard deviation
ensstdl Ensemble standard deviation (n-1)
ensvar Ensemble variance

ensvarl Ensemble variance (n-1)

ensskew Ensemble skewness

enskurt Ensemble kurtosis

ensmedian Ensemble median

enspctl Ensemble percentiles
ensrkhistspace Ranked Histogram averaged over space
ensrkhisttime Ranked Histogram averaged over time
ensroc Ensemble Receiver Operating characteristics
enscrps Ensemble CRPS and decomposition
ensbrs Ensemble Brier score

117

Statistical values Reference manual

fldmin Field minimum

fldmax Field maximum
fidrange Field range

fldsum Field sum

fldint Field integral

fldmean Field mean

fldavg Field average

fidstd Field standard deviation
fidstd1l Field standard deviation (n-1)
fidvar Field variance

fldvarl Field variance (n-1)
fldskew Field skewness

fldkurt Field kurtosis
fldmedian Field median

fldcount Field count

fidpctl Field percentiles
zonmin Zonal minimum
zonmax Zonal maximum
zonrange Zonal range

zonsum Zonal sum

zonmean Zonal mean

zonavg Zonal average

zonstd Zonal standard deviation
zonstd1l Zonal standard deviation (n-1)
zonvar Zonal variance

zonvarl Zonal variance (n-1)
zonskew Zonal skewness

zonkurt Zonal kurtosis
zonmedian Zonal median

zonpctl Zonal percentiles
mermin Meridional minimum
mermax Meridional maximum
merrange Meridional range
mersum Meridional sum
mermean Meridional mean
meravg Meridional average
merstd Meridional standard deviation
merstdl Meridional standard deviation (n-1)
mervar Meridional variance
mervarl Meridional variance (n-1)
merskew Meridional skewness
merkurt Meridional kurtosis
mermedian Meridional median
merpctl Meridional percentiles

118

Reference manual

Statistical values

gridboxmin Gridbox minimum
gridboxmax Gridbox maximum
gridboxrange Gridbox range

gridboxsum Gridbox sum

gridboxmean Gridbox mean

gridboxavg Gridbox average

gridboxstd Gridbox standard deviation
gridboxstd1 Gridbox standard deviation (n-1)
gridboxvar Gridbox variance

gridboxvarl Gridbox variance (n-1)
gridboxskew Gridbox skewness
gridboxkurt Gridbox kurtosis
gridboxmedian Gridbox median

remapmin Remap minimum

remapmax Remap maximum

remaprange Remap range

remapsum Remap sum

remapmean Remap mean

remapavg Remap average

remapstd Remap standard deviation
remapstdl Remap standard deviation (n-1)
remapvar Remap variance

remapvarl Remap variance (n-1)
remapskew Remap skewness

remapkurt Remap kurtosis

remapmedian Remap median

vertmin Vertical minimum

vertmax Vertical maximum

vertrange Vertical range

vertsum Vertical sum

vertmean Vertical mean

vertavg Vertical average

vertstd Vertical standard deviation
vertstd1 Vertical standard deviation (n-1)
vertvar Vertical variance

vertvarl Vertical variance (n-1)
timselmin Time selection minimum
timselmax Time selection maximum
timselrange Time selection range
timselsum Time selection sum
timselmean Time selection mean
timselavg Time selection average
timselstd Time selection standard deviation
timselstd1 Time selection standard deviation (n-1)
timselvar Time selection variance
timselvarl Time selection variance (n-1)
timselpctl Time range percentiles

119

Statistical values Reference manual

runmin Running minimum
runmax Running maximum
runrange Running range

runsum Running sum

runmean Running mean

runavg Running average

runstd Running standard deviation
runstdl Running standard deviation (n-1)
runvar Running variance

runvarl Running variance (n-1)
runpctl Running percentiles
timmin Time minimum

timmax Time maximum
timminidx Index of time minimum
timmaxidx Index of time maximum
timrange Time range

timsum Time sum

timmean Time mean

timavg Time average

timstd Time standard deviation
timstd1 Time standard deviation (n-1)
timvar Time variance

timvarl Time variance (n-1)
timpctl Time percentiles

hourmin Hourly minimum
hourmax Hourly maximum
hourrange Hourly range

hoursum Hourly sum

hourmean Hourly mean

houravg Hourly average

hourstd Hourly standard deviation
hourstdl Hourly standard deviation (n-1)
hourvar Hourly variance

hourvarl Hourly variance (n-1)
hourpctl Hourly percentiles

daymin Daily minimum

daymax Daily maximum

dayrange Daily range

daysum Daily sum

daymean Daily mean

dayavg Daily average

daystd Daily standard deviation
daystd1 Daily standard deviation (n-1)
dayvar Daily variance

dayvarl Daily variance (n-1)
daypctl Daily percentiles

120

Reference manual

Statistical values

monmin
monmax
monrange
monsum
monmean
monavg
monstd
monstdl
monvar
monvarl

monpctl

yearmonmean

yearmin
yearmax
yearminidx
yearmaxidx
yearrange
yearsum
yearmean
yearavg
yearstd
yearstdl
yearvar
yearvarl

yearpctl

seasmin
seasmax
seasrange
seassum
seasmean
seasavg
seasstd
seasstdl
seasvar
seasvarl

seaspctl

yhourmin
yhourmax
yhourrange
yhoursum
yhourmean
yhouravg
yhourstd
yhourstd1
yhourvar
yhourvarl

Monthly minimum

Monthly maximum

Monthly range

Monthly sum

Monthly mean

Monthly average

Monthly standard deviation
Monthly standard deviation (n-1)
Monthly variance

Mounthly variance (n-1)

Monthly percentiles
Yearly mean from monthly data

Yearly minimum

Yearly maximum

Index of yearly minimum
Index of yearly maximum
Yearly range

Yearly sum

Yearly mean

Yearly average

Yearly standard deviation
Yearly standard deviation (n-1)
Yearly variance

Yearly variance (n-1)

Yearly percentiles

Seasonal minimum

Seasonal maximum

Seasonal range

Seasonal sum

Seasonal mean

Seasonal average

Seasonal standard deviation
Seasonal standard deviation (n-1)
Seasonal variance

Seasonal variance (n-1)

Seasonal percentiles

Multi-year hourly minimum

Multi-year hourly maximum

Multi-year hourly range

Multi-year hourly sum

Multi-year hourly mean

Multi-year hourly average

Multi-year hourly standard deviation
Multi-year hourly standard deviation (n-1)
Multi-year hourly variance

Multi-year hourly variance (n-1)

121

Statistical values Reference manual

dhourmin Multi-day hourly minimum

dhourmax Multi-day hourly maximum
dhourrange Multi-day hourly range

dhoursum Multi-day hourly sum

dhourmean Multi-day hourly mean

dhouravg Multi-day hourly average

dhourstd Multi-day hourly standard deviation
dhourstd1 Multi-day hourly standard deviation (n-1)
dhourvar Multi-day hourly variance

dhourvarl Multi-day hourly variance (n-1)
dminutemin Multi-day by the minute minimum
dminutemax Multi-day by the minute maximum
dminuterange Multi-day by the minute range
dminutesum Multi-day by the minute sum
dminutemean Multi-day by the minute mean
dminuteavg Multi-day by the minute average
dminutestd Multi-day by the minute standard deviation
dminutestd1 Multi-day by the minute standard deviation (n-1)
dminutevar Multi-day by the minute variance
dminutevarl Multi-day by the minute variance (n-1)
ydaymin Multi-year daily minimum

ydaymax Multi-year daily maximum

ydayrange Multi-year daily range

ydaysum Multi-year daily sum

ydaymean Multi-year daily mean

ydayavg Multi-year daily average

ydaystd Multi-year daily standard deviation
ydaystd1l Multi-year daily standard deviation (n-1)
ydayvar Multi-year daily variance

ydayvarl Multi-year daily variance (n-1)
ydaypctl Multi-year daily percentiles

ymonmin Multi-year monthly minimum
ymonmax Multi-year monthly maximum
ymonrange Multi-year monthly range

ymonsum Multi-year monthly sum

ymonmean Multi-year monthly mean

ymonavg Multi-year monthly average

ymonstd Multi-year monthly standard deviation
ymonstdl Multi-year monthly standard deviation (n-1)
ymonvar Multi-year monthly variance

ymonvarl Multi-year monthly variance (n-1)
ymonpctl Multi-year monthly percentiles

122

Reference manual

Statistical values

yseasmin
yseasmax
yseasrange
yseassum
yseasmean
yseasavg
yseasstd
yseasstdl
yseasvar
yseasvarl

yseaspctl

ydrunmin
ydrunmax
ydrunsum
ydrunmean
ydrunavg
ydrunstd
ydrunstd1
ydrunvar
ydrunvarl

ydrunpctl

Multi-year seasonal minimum

Multi-year seasonal maximum

Multi-year seasonal range

Multi-year seasonal sum

Multi-year seasonal mean

Multi-year seasonal average

Multi-year seasonal standard deviation
Multi-year seasonal standard deviation (n-1)
Multi-year seasonal variance

Multi-year seasonal variance (n-1)

Multi-year seasonal percentiles

Multi-year daily running minimum

Multi-year daily running maximum

Multi-year daily running sum

Multi-year daily running mean

Multi-year daily running average

Multi-year daily running standard deviation
Multi-year daily running standard deviation (n-1)
Multi-year daily running variance

Multi-year daily running variance (n-1)

Multi-year daily running percentiles

123

Statistical values Reference manual

2.8.1. TIMCUMSUM - Cumulative sum over all timesteps
Synopsis

timcumsum infile outfile

Description

The timcumsum operator calculates the cumulative sum over all timesteps. Missing values are treated
as numeric zero when summing.

o(t,z) = sum{i(t',z),0 < t' < t}

2.8.2. CONSECSTAT - Consecute timestep periods
Synopsis

<operator> infile outfile

Description

This module computes periods over all timesteps in infile where a certain property is valid. The
property can be chosen by creating a mask from the original data, which is the expected input format
for operators of this module. Depending on the operator full information about each period or just
its length and ending date are computed.

Operators
consecsum Consecutive Sum
This operator computes periods of consecutive timesteps similar to a runsum, but
periods are finished, when the mask value is 0. That way multiple periods can be
found. Timesteps from the input are preserved. Missing values are handled like 0,
i.e. finish periods of consecutive timesteps.
consects Consecutive Timesteps
In contrast to the operator above consects only computes the length of each period
together with its last timestep. To be able to perform statistical analysis like min,
max or mean, everything else is set to missing value.
Example

For a given time series of daily temperatures, the periods of summer days can be calculated with
inplace maskting the input field:

cdo consects -gtc,20.0 infilel outfile

124

Reference manual Statistical values

2.8.3. VARSSTAT - Statistical values over all variables
Synopsis
<operator> infile outfile

Description

This module computes statistical values over all variables for each timestep. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation is written to
outfile. All input variables need to have the same gridsize and the same number of levels.

Operators
varsmin Variables minimum
For every timestep the minimum over all variables is computed.
varsmax Variables maximum
For every timestep the maximum over all variables is computed.
varsrange Variables range
For every timestep the range over all variables is computed.
varssum Variables sum
For every timestep the sum over all variables is computed.
varsmean Variables mean
For every timestep the mean over all variables is computed.
varsavg Variables average
For every timestep the average over all variables is computed.
varsstd Variables standard deviation
For every timestep the standard deviation over all variables is computed. Normalize
by n.
varsstd1 Variables standard deviation (n-1)
For every timestep the standard deviation over all variables is computed. Normalize
by (n-1).
varsvar Variables variance
For every timestep the variance over all variables is computed. Normalize by n.
varsvarl Variables variance (n-1)

For every timestep the variance over all variables is computed. Normalize by (n-1).

125

Statistical values

Reference manual

2.8.4. ENSSTAT - Statistical values over an ensemble

Synopsis

<operator> infiles outfile

enspctl,p infiles outfile

Description

This module computes statistical values over an ensemble of input files. Depending on the chosen
operator, the minimum, maximum, range, sum, average, standard deviation, variance, skewness,
kurtosis, median or a certain percentile over all input files is written to outfile. All input files need
to have the same structure with the same variables. The date information of a timestep in outfile
is the date of the first input file.

Operators

ensmin
ensmax
ensrange
enssum
ensmean
ensavg

ensstd

ensstd1

ensvar

ensvarl

ensskew
enskurt
ensmedian

enspctl

Ensemble minimum

O(tv :E) = min{il(tv LC), iQ(tv x), T in(tv x)}
Ensemble maximum

o(t,) = max{ii(¢t, x),i2(t,), -, in(t,)}
Ensemble range

o(t,x) = range{iy (t,x),i2(t,), -, in(t,x)}
Ensemble sum

O(tv CL’) = Sum{il(tv 1')7 iQ(tv 1’), Tt Zn(ta .’E)}
Ensemble mean

o(t,z) = mean{ii(t,x),iz(t,x), -, in(t,)}
Ensemble average

o(t,x) = avg{i1(t,), i2(t,x), - ,in(t,z)}
Ensemble standard deviation

Normalize by n.

o(t,z) = std{iy (¢, z),i2(t, z), -+, in(t,2)}

Ensemble standard deviation (n-1)
Normalize by (n-1).

o(t,x) = std1{i1 (¢,), i2(t,x), -+, in(t,x)}

Ensemble variance
Normalize by n.

O(tvx) = Var{il(tvx)aiQ(t,x)v T >in(tax)}

Ensemble variance (n-1)
Normalize by (n-1).

o(t,x) = varl{ii (¢, x),ia(t, x), -, in(t,2)}
Ensemble skewness

o(t,x) = skew{iy(t,x),i2(t,), -, in(t,)}
Ensemble kurtosis

o(t,x) = kurt{iy (t,z),i2(t,x), -, in(t,z)}
Ensemble median

o(t,z) = median{iy (¢, z),i2(t,), -, in(t,)}

Ensemble percentiles
o(t,z) = pth percentile{i (¢, z),i2(t,), -+, in(t,x)}

126

Reference manual Statistical values

Parameter
p FLOAT Percentile number in 0, ..., 100
Note

Operators of this module need to open all input files simultaneously. The maximum number of open
files depends on the operating system!

Example

To compute the ensemble mean over 6 input files use:

cdo ensmean infilel infile2 infile3 infiled infileb infile6 outfile

Or shorter with filename substitution:

cdo ensmean infile[1-6] outfile

To compute the 50th percentile (median) over 6 input files use:

cdo enspctl,50 infilel infile2 infile3 infile4 infileb infile6 outfile

127

Statistical values Reference manual

2.8.5. ENSSTAT?2 - Statistical values over an ensemble

Synopsis

<operator> obsfile ensfiles outfile

Description

This module computes statistical values over the ensemble of ensfiles using obsfile as a reference.
Depending on the operator a ranked Histogram or a roc-curve over all Ensembles ensfiles with
reference to obsfile is written to outfile. The date and grid information of a timestep in outfile
is the date of the first input file. Thus all input files are required to have the same structure in terms
of the gridsize, variable definitions and number of timesteps.

All Operators in this module use obsfile as the reference (for instance an observation) whereas
ensfiles are understood as an ensemble consisting of n (where n is the number of ensfiles) mem-
bers.

The operators ensrkhistspace and ensrkhisttime compute Ranked Histograms. Therefor the vertical
axis is utilized as the Histogram axis, which prohibits the use of files containing more than one level.
The histogram axis has nensfiles+1 bins with level 0 containing for each grid point the number of
observations being smaller as all ensembles and level nensfiles+1 indicating the number of observations
being larger than all ensembles.

ensrkhisttime computes a ranked histogram at each timestep reducing each horizontal grid to a 1x1
grid and keeping the time axis as in obsfile. Contrary ensrkhistspace computes a histogram at
each grid point keeping the horizontal grid for each variable and reducing the time-axis. The time
information is that from the last timestep in obsfile.

Operators
ensrkhistspace Ranked Histogram averaged over space
ensrkhisttime Ranked Histogram averaged over time
ensroc Ensemble Receiver Operating characteristics
Example

To compute a rank histogram over 5 input files ensfilel-ensfileb given an observation in obsfile
use:

cdo ensrkhisttime obsfile ensfilel ensfile2 ensfile3 ensfiled4 ensfileb outfile

Or shorter with filename substitution:

cdo ensrkhisttime obsfile ensfile[1-5] outfile

128

Reference manual Statistical values

2.8.6. ENSVAL - Ensemble validation tools
Synopsis

enscrps rfile infiles outfilebase

ensbrs,x rfile infiles outfilebase

Description

This module computes ensemble validation scores and their decomposition such as the Brier and
cumulative ranked probability score (CRPS). The first file is used as a reference it can be a clima-
tology, observation or reanalysis against which the skill of the ensembles given in infiles is measured.
Depending on the operator a number of output files is generated each containing the skill score and
its decomposition corresponding to the operator. The output is averaged over horizontal fields using
appropriate weights for each level and timestep in rfile.

All input files need to have the same structure with the same variables. The date information of a

timestep in outfile is the date of the first input file. The output files are named as <outfilebase>.<type>.<filesi
where <type> depends on the operator and <filesuffix> is determined from the output file type.

There are three output files for operator enscrps and four output files for operator ensbrs.

The CRPS and its decomposition into Reliability and the potential CRPS are calculated by an
appropriate averaging over the field members (note, that the CRPS does *not* average linearly). In
the three output files <type> has the following meaning: crps for the CRPS, reli for the reliability
and crpspot for the potential crps. The relation CRPS = CRPSpot + RELI

holds.

The Brier score of the Ensemble given by infiles with respect to the reference given in rfile and
the threshold x is calculated. In the four output files <type> has the following meaning: brs for the
Brier score wrt threshold x; brsreli for the Brier score reliability wrt threshold x; brsreso for the
Brier score resolution wrt threshold x; brsunct for the Brier score uncertainty wrt threshold x. In
analogy to the CRPS the following relation holds: BRS(x) = RELI(z) — RESO(x) + UNCT(x).

The implementation of the decomposition of the CRPS and Brier Score follows Hans Hersbach (2000):
Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, in:
Weather and Forecasting (15) pp. 559-570.

The CRPS code decomposition has been verified against the CRAN - ensemble validation package
from R. Differences occur when grid-cell area is not uniform as the implementation in R does not
account for that.

Operators
enscrps Ensemble CRPS and decomposition
ensbrs Ensemble Brier score
Ensemble Brier Score and Decomposition
Example

To compute the field averaged Brier score at x=5 over an ensemble with 5 members ensfilel-5
w.r.t. the reference rfile and write the results to files obase.brs.<suff>, obase.brsreli<suff>,
obase.brsreso<suff>, obase.brsunct<suff> where <suff> is determined from the output file
type, use

cdo ensbrs,b5 rfile ensfilel ensfile2 ensfile3 ensfiled ensfileb obase

129

Statistical values Reference manual

or shorter using file name substitution:

cdo ensbrs,5 rfile ensfile[1-5] obase

130

Reference manual Statistical values

2.8.7. FLDSTAT - Statistical values over a field
Synopsis

< operator >[,parameter] infile outfile

fldpctl,pn infile outfile

Description

This module computes statistical values of all input fields. A field is a horizontal layer of a data
variable. Depending on the chosen operator, the minimum, maximum, range, sum, integral, average,
standard deviation, variance, skewness, kurtosis, median or a certain percentile of the field is written
to outfile.

Operators
fldmin Field minimum
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = min{i(t,z'),z1 <2’ < z,}
fldmax Field maximum
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = max{i(t,2'), 1 <2’ < z,}
fldrange Field range
For every gridpoint x1, ..., x, of the same field it is:
oft, 1) = range{i(t, '), v1 < o' < .}
fldsum Field sum
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = sum{i(t,2'),zy <2’ <x,}
fldint Field integral
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = sum{i(t,2) * cellarea(z'),z; < 2’ < x,}
fldmean Field mean
For every gridpoint z1, ..., x, of the same field it is:
o(t,1) = mean{i(t,z"),x; < 2’ < x,}
weighted by area weights obtained by the input field.
fidavg Field average
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = avg{i(t,2'),x1 <2’ < x,}
weighted by area weights obtained by the input field.
fidstd Field standard deviation
Normalize by n. For every gridpoint 1, ..., z, of the same field it is:
o(t,1) =std{i(t,2'), 1 <z’ <z}
weighted by area weights obtained by the input field.
fldstd1 Field standard deviation (n-1)

Normalize by (n-1). For every gridpoint x1, ..., x,, of the same field it is:
O(ta 1) = Stdl{i(tvx/)vxl <a' < xn}

weighted by area weights obtained by the input field.

131

Statistical values Reference manual

fidvar Field variance
Normalize by n. For every gridpoint x1, ..., z, of the same field it is:
o(t,1) = var{i(t,z'),z1 < 2’ < xz,}

weighted by area weights obtained by the input field.

fldvarl Field variance (n-1)
Normalize by (n-1). For every gridpoint 21, ..., z, of the same field it is:
o(t,1) = varl{i(t,z'), 1 <z’ < zp}

weighted by area weights obtained by the input field.

fldskew Field skewness
For every gridpoint z1, ..., x, of the same field it is:
o(t,1) = skew{i(t,z'), 21 < 2’ < z,}

fidkurt Field kurtosis
For every gridpoint x1, ..., z, of the same field it is:
o(t,1) = kurt{i(t,z'), 1 < 2’ < z,}

fldmedian Field median
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = median{i(t,z'),z1 <z’ <z,}

fldcount Field count

Number of non-missing values of the field.

fidpctl Field percentiles
For every gridpoint x1, ..., x, of the same field it is:
o(t,1) = pth percentile{i(t,2’),z; <2’ < x,}

Parameter
verbose BOOL print lon/lat coordinates of min/max values
weights BOOL weights=FALSE disables weighting by grid cell area [default: weights=TRUE]
pn FLOAT Percentile number in 0, ..., 100

Example

To compute the field mean of all input fields use:

cdo fldmean infile outfile

To compute the 90th percentile of all input fields use:

cdo fldpctl,pn=90 infile outfile

132

Reference manual Statistical values

2.8.8. ZONSTAT - Zonal statistics
Synopsis

<operator > infile outfile
zonmean|,zonaldes] infile outfile

zonpctl,p infile outfile

Description

This module computes zonal statistical values of the input fields. Depending on the chosen operator,
the zonal minimum, maximum, range, sum, average, standard deviation, variance, skewness, kurtosis,
median or a certain percentile of the field is written to outfile. Operators of this module require
all variables on the same regular lon/lat grid. Only the zonal mean (zonmean) can be calculated for
data on an unstructured grid if the latitude bins are defined with the optional parameter zonaldes.

Operators
zonmin Zonal minimum
For every latitude the minimum over all longitudes is computed.
zonmax Zonal maximum
For every latitude the maximum over all longitudes is computed.
zonrange Zonal range
For every latitude the range over all longitudes is computed.
zonsum Zonal sum
For every latitude the sum over all longitudes is computed.
zonmean Zonal mean
For every latitude the mean over all longitudes is computed. Use the optional pa-
rameter zonaldes for data on an unstructured grid.
zonavg Zonal average
For every latitude the average over all longitudes is computed.
zonstd Zonal standard deviation
For every latitude the standard deviation over all longitudes is computed. Normalize
by n.
zonstd1l Zonal standard deviation (n-1)
For every latitude the standard deviation over all longitudes is computed. Normalize
by (n-1).
zonvar Zonal variance
For every latitude the variance over all longitudes is computed. Normalize by n.
zonvarl Zonal variance (n-1)
For every latitude the variance over all longitudes is computed. Normalize by (n-1).
zonskew Zonal skewness
For every latitude the skewness over all longitudes is computed.
zonkurt Zonal kurtosis
For every latitude the kurtosis over all longitudes is computed.
zonmedian Zonal median
For every latitude the median over all longitudes is computed.
zonpctl Zonal percentiles

For every latitude the pth percentile over all longitudes is computed.

133

Statistical values Reference manual

Parameter
p FLOAT Percentile number in 0, ..., 100
zonaldes STRING Description of the zonal latitude bins needed for data on an unstructured
grid. A predefined zonal description is zonal <DY>. DY is the increment of the lati-
tudes in degrees.
Example

To compute the zonal mean of all input fields use:

cdo zonmean infile outfile

To compute the 50th meridional percentile (median) of all input fields use:

cdo zonpctl,50 infile outfile

134

Reference manual

Statistical values

2.8.9. MERSTAT - Meridional statistics

Synopsis

<operator> infile outfile

merpctl,p infile outfile

Description

This module computes meridional statistical values of the input fields. Depending on the chosen
operator, the meridional minimum, maximum, range, sum, average, standard deviation, variance,
skewness, kurtosis, median or a certain percentile of the field is written to outfile. Operators of this
module require all variables on the same regular lon/lat grid.

Operators

mermin
mermax
merrange
mersum
mermean
meravg

merstd

merstd1

mervar
mervarl
merskew
merkurt
mermedian

merpctl

Parameter
p FLOAT

Meridional minimum
For every longitude the minimum over all latitudes is computed.

Meridional maximum
For every longitude the maximum over all latitudes is computed.

Meridional range
For every longitude the range over all latitudes is computed.

Meridional sum
For every longitude the sum over all latitudes is computed.

Meridional mean
For every longitude the area weighted mean over all latitudes is computed.

Meridional average
For every longitude the area weighted average over all latitudes is computed.

Meridional standard deviation
For every longitude the standard deviation over all latitudes is computed. Normalize
by n.

Meridional standard deviation (n-1)
For every longitude the standard deviation over all latitudes is computed. Normalize
by (n-1).

Meridional variance
For every longitude the variance over all latitudes is computed. Normalize by n.

Meridional variance (n-1)
For every longitude the variance over all latitudes is computed. Normalize by (n-1).

Meridional skewness
For every longitude the skewness over all latitudes is computed.

Meridional kurtosis
For every longitude the kurtosis over all latitudes is computed.

Meridional median
For every longitude the median over all latitudes is computed.

Meridional percentiles
For every longitude the pth percentile over all latitudes is computed.

Percentile number in 0, ..., 100

135

Statistical values

Reference manual

Example

To compute the meridional mean of all input fields use:

cdo mermean infile outfile

To compute the 50th meridional percentile (median) of all input fields use:

cdo merpctl,50 infile outfile

136

Reference manual

Statistical values

2.8.10. GRIDBOXSTAT - Statistical values over grid boxes

Synopsis

<operator >,nx,ny infile outfile

Description

This module computes statistical values over surrounding grid boxes. Depending on the chosen
operator, the minimum, maximum, range, sum, average, standard deviation, variance, skewness,
kurtosis or median of the neighboring grid boxes is written to outfile. All gridbox operators only
work on quadrilateral curvilinear grids.

Operators

gridboxmin
gridboxmax
gridboxrange
gridboxsum
gridboxmean
gridboxavg
gridboxstd
gridboxstd1
gridboxvar
gridboxvarl
gridboxskew
gridboxkurt

gridboxmedian

Parameter
nx INTEGER
ny INTEGER

Example

Gridbox minimum
Minimum value of the selected grid boxes.

Gridbox maximum
Maximum value of the selected grid boxes.

Gridbox range
Range (max-min value) of the selected grid boxes.

Gridbox sum
Sum of the selected grid boxes.

Gridbox mean
Mean of the selected grid boxes.

Gridbox average
Average of the selected grid boxes.

Gridbox standard deviation
Standard deviation of the selected grid boxes. Normalize by n.

Gridbox standard deviation (n-1)
Standard deviation of the selected grid boxes. Normalize by (n-1).

Gridbox variance
Variance of the selected grid boxes. Normalize by n.

Gridbox variance (n-1)
Variance of the selected grid boxes. Normalize by (n-1).

Gridbox skewness
Skewness of the selected grid boxes.

Gridbox kurtosis
Kurtosis of the selected grid boxes.

Gridbox median
Median of the selected grid boxes.

Number of grid boxes in x direction

Number of grid boxes in y direction

To compute the mean over 10x10 grid boxes of the input field use:

cdo gridboxmean,10,10 infile outfile

137

Statistical values

Reference manual

2.8.11. REMAPSTAT - Remaps source points to target cells

Synopsis

<operator >,grid infile outfile

Description

This module maps source points to target cells by calculating a statistical value from the source points.
Each target cell contains the statistical value from all source points within that target cell. If there
are no source points within a target cell, it gets a missing value. Depending on the chosen operator
the minimum, maximum, range, sum, average, variance, standard deviation, skewness, kurtosis or
median of source points is computed.

Operators

remapmin
remapmax
remaprange
remapsum
remapmean
remapavg
remapstd
remapstdl
remapvar
remapvarl
remapskew
remapkurt

remapmedian

Parameter

grid STRING

Remap minimum
Minimum value of the source points.

Remap maximum
Maximum value of the source points.

Remap range
Range (max-min value) of the source points.

Remap sum
Sum of the source points.

Remap mean
Mean of the source points.

Remap average
Average of the source points.

Remap standard deviation
Standard deviation of the source points. Normalize by n.

Remap standard deviation (n-1)
Standard deviation of the source points. Normalize by (n-1).

Remap variance
Variance of the source points. Normalize by n.

Remap variance (n-1)
Variance of the source points. Normalize by (n-1).

Remap skewness
Skewness of the source points.

Remap kurtosis
Kurtosis of the source points.

Remap median
Median of the source points.

Target grid description file or name

138

Reference manual Statistical values

Example

To compute the mean over source points within the taget cells, use:

cdo remapmean,<targetgrid> infile outfile

If some of the target cells contain missing values, use the Operator setmisstonn to fill these missing
values with the nearest neighbor cell:

cdo setmisstonn -remapmean,<targetgrid> infile outfile

139

Statistical values Reference manual

2.8.12. VERTSTAT - Vertical statistics
Synopsis

<operator >,weights infile outfile

Description

This module computes statistical values over all levels of the input variables. According to chosen
operator the vertical minimum, maximum, range, sum, average, variance or standard deviation is
written to outfile.

Operators
vertmin Vertical minimum
For every gridpoint the minimum over all levels is computed.
vertmax Vertical maximum
For every gridpoint the maximum over all levels is computed.
vertrange Vertical range
For every gridpoint the range over all levels is computed.
vertsum Vertical sum
For every gridpoint the sum over all levels is computed.
vertmean Vertical mean
For every gridpoint the layer weighted mean over all levels is computed.
vertavg Vertical average
For every gridpoint the layer weighted average over all levels is computed.
vertstd Vertical standard deviation
For every gridpoint the standard deviation over all levels is computed. Normalize by
n.
vertstdl Vertical standard deviation (n-1)

For every gridpoint the standard deviation over all levels is computed. Normalize by
(n-1).

vertvar Vertical variance
For every gridpoint the variance over all levels is computed. Normalize by n.

vertvarl Vertical variance (n-1)
For every gridpoint the variance over all levels is computed. Normalize by (n-1).

Parameter

weights BOOL weights=FALSE disables weighting by layer thickness [default: weights=TRUE]

Example

To compute the vertical sum of all input variables use:

cdo vertsum infile outfile

140

Reference manual

Statistical values

2.8.13. TIMSELSTAT - Time range statistics

Synopsis

< operator >,nsets[,noffset[,nskip]] infile outfile

Description

This module computes statistical values for a selected number of timesteps. According to the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of the selected
timesteps is written to outfile. The time of outfile is determined by the time in the middle of
all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators

timselmin

timselmax

timselrange

timselsum

timselmean

timselavg

timselstd

timselstd1

timselvar

Time selection minimum

For every adjacent sequence t1, ..., t, of timesteps of the same selected time range
it is:

o(t,z) = min{i(t',z),t1 <t' < t,}

Time selection maximum

For every adjacent sequence t1,...,t, of timesteps of the same selected time range
it is:

o(t,r) = max{i(t',z),t; <t' <t,}

Time selection range

For every adjacent sequence tq,...,t, of timesteps of the same selected time range
it is:

o(t,z) = range{i(t',x),t; <t' <t,}

Time selection sum

For every adjacent sequence t1,...,t, of timesteps of the same selected time range
it is:

o(t,z) = sum{i(t',x),t; <t <t,}

Time selection mean

For every adjacent sequence t1, ...,t, of timesteps of the same selected time range
it is:

o(t,z) = mean{i(t',z),t; <t <t,}

Time selection average

For every adjacent sequence t1, ..., t, of timesteps of the same selected time range
it is:

o(t,z) = avg{i(t',z),t1 <t' < t,}

Time selection standard deviation

Normalize by n. For every adjacent sequence t1,...,t, of timesteps of the same

selected time range it is:
o(t,x) =std{i(t',z),t1 <t <t,}

Time selection standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence t1, ..., ¢, of timesteps of the same
selected time range it is:

o(t,z) = std1{i(t',z),t; <t' <t,}

Time selection variance

Normalize by n. For every adjacent sequence t1,...,t, of timesteps of the same
selected time range it is:

o(t,z) = var{i(t',x),t; <t <t,}

141

Statistical values Reference manual

timselvarl Time selection variance (n-1)
Normalize by (n-1). For every adjacent sequence t1, ..., t, of timesteps of the same
selected time range it is:
o(t,x) = varl{i(t',x),t; <t <t,}

Parameter
nsets INTEGER Number of input timesteps for each output timestep
noffset INTEGER Number of input timesteps skipped before the first timestep range (optional)
nskip INTEGER Number of input timesteps skipped between timestep ranges (optional)

Example

Assume an input dataset has monthly means over several years. To compute seasonal means from
monthly means the first two month have to be skipped:

cdo timselmean,3,2 infile outfile

2.8.14. TIMSELPCTL - Time range percentile values
Synopsis

timselpctl,p,nsets[,noffset[,nskip]] infilel infile2 infile3 outfile

Description

This operator computes percentile values over a selected number of timesteps in infilel. The
algorithm uses histograms with minimum and maximum bounds given in infile2 and infile3,
respectively. The default number of histogram bins is 101. The default can be overridden by setting
the environment variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should
be the result of corresponding timselmin and timselmax operations, respectively. The time of outfile
is determined by the time in the middle of all contributing timesteps of infilel. This can be change
with the CDO option --timestat_date <first|middle[last>.

For every adjacent sequence t1,...,t, of timesteps of the same selected time range it is:

o(t,z) = pth percentile{i(t',z),t; <t' <t,}

Parameter
p FLOAT Percentile number in 0, ..., 100
nsets INTEGER Number of input timesteps for each output timestep

noffset INTEGER Number of input timesteps skipped before the first timestep range (optional)
nskip INTEGER Number of input timesteps skipped between timestep ranges (optional)

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

142

Reference manual Statistical values

2.8.15. RUNSTAT - Running statistics
Synopsis

<operator>,nts infile outfile

Description

This module computes running statistical values over a selected number of timesteps. Depending on
the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation
of a selected number of consecutive timesteps read from infile is written to outfile. The time of
outfile is determined by the time in the middle of all contributing timesteps of infile. This can
be change with the CDO option --timestat_ date <firstjmiddle|last>.

Operators

runmin Running minimum

o(t+ (nts —1)/2,z) = min{i(t,z),i(t + 1, z),...,i(t + nts — 1, x)}
runmax Running maximum

o(t+ (nts —1)/2,x) = max{i(t,x),i(t + 1,z),...,i(t + nts — 1,z)}
runrange Running range

o(t+ (nts — 1)/2,x) = range{i(t, z),i(t + 1,2),...,i(t + nts — 1,z)}
runsum Running sum

o(t+ (nts —1)/2,x) = sum{i(t,z),i(t + 1,2),...,i(t + nts — 1,z)}
runmean Running mean

o(t+ (nts —1)/2,x2) = mean{i(t,x),i(t + 1,z),...,i(t + nts — 1,2)}
runavg Running average

o(t+ (nts —1)/2,x) = avg{i(t,z),i(t+ 1,z),....i(t + nts — 1,2)}
runstd Running standard deviation

Normalize by n.

o(t + (nts — 1)/2,z) = std{i(t,x),i(t + 1,x),...,i(t + nts — 1, x)}
runstdl Running standard deviation (n-1)

Normalize by (n-1).

o(t+ (nts —1)/2,x) = std1{i(t,x),i(t + 1,z),...,i(t + nts — 1,2)}
runvar Running variance

Normalize by n.

o(t+ (nts —1)/2,z) = var{i(t,z),i(t + 1,2),...,i(t + nts — 1,z)}
runvarl Running variance (n-1)

Normalize by (n-1).

o(t+ (nts —1)/2,x) = var1{i(t,z),i(t + 1,2),...,i(t + nts — 1,z)}

Parameter

nts INTEGER Number of timesteps

Environment

CDO_TIMESTAT DATE Sets the time stamp in outfile to the "first", "middle" or "last" contributing
timestep of infile.

143

Statistical values Reference manual

Example

To compute the running mean over 9 timesteps use:

cdo runmean,9 infile outfile

2.8.16. RUNPCTL - Running percentile values
Synopsis

runpctl,p,nts infile outfile

Description

This module computes running percentiles over a selected number of timesteps in infile. The time
of outfile is determined by the time in the middle of all contributing timesteps of infile. This can
be change with the CDO option --timestat_ date <first|middle|last>.

o(t+ (nts — 1)/2,x) = pth percentile{i(t,z),i(t + 1,x),...,i(t + nts — 1,z)}
Parameter

p FLOAT Percentile number in 0, ..., 100
nts INTEGER Number of timesteps

Example

To compute the running 50th percentile (median) over 9 timesteps use:

cdo runpctl,50,9 infile outfile

144

Reference manual

Statistical values

2.8.17. TIMSTAT - Statistical values over all timesteps

Synopsis

<operator> infile outfile

Description

This module computes statistical values over all timesteps in infile.
operator the minimum, maximum, range, sum, average, variance or standard deviation of all timesteps
read from infile is written to outfile. The time of outfile is determined by the time in the middle
of all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators
timmin
timmax
timminidx
timmaxidx
timrange
timsum
timmean
timavg
timstd
timstd1
timvar

timvarl

Example

Time minimum
o(l,z) = min{i(t',x),t; <t' <t,}

Time maximum
o(1,2) = max{i(t',x),t; <t <t,}

Index of time minimum
o(1,z) = minidx{i(t',z),t; <t <t,}

Index of time maximum
o(1,x2) = maxidx{i(t',z),t; <t' <t,}

Time range
o(l,z) = range{i(t’,z),t, <t' <t,}

Time sum
o(1,2) = sum{i(t',z),t1 <t <t,}

Time mean

o(1,2) = mean{i(t',x),t; <t' <t,}

Time average

o(1,z) = avg{i(t',z),t; <t <t,}

Time standard deviation

Normalize by n. o(1,2) = std{i(¢',z),t; <t <t,}
Time standard deviation (n-1)

Normalize by (n-1). o(1,z) = std1{i(¢',z),t; <t <t,}

Time variance
Normalize by n. o(1,x) = var{i(t',z),t1 <t <t,}

Time variance (n-1)
Normalize by (n-1). o(1,z) = var1{i(¢',z),t; <t <t,}

To compute the mean over all input timesteps use:

Depending on the chosen

cdo timmean infile outfile

145

Statistical values Reference manual

2.8.18. TIMPCTL - Percentile values over all timesteps
Synopsis

timpctl,p infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps in infilel. The algorithm uses histograms
with minimum and maximum bounds given in infile2 and infile3, respectively. The default
number of histogram bins is 101. The default can be overridden by defining the environment variable
CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding timmin and
timmax operations, respectively. The time of outfile is determined by the time in the middle of
all contributing timesteps of infilel. This can be change with the CDO option --timestat_ date
<first|middle[last>.

o(1,z) = pth percentile{i(t',z),t; <t <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the 90th percentile over all input timesteps use:

cdo timmin infile minfile
cdo timmax infile maxfile
cdo timpctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo timpctl,90 infile -timmin infile -timmax infile outfile

146

Reference manual

Statistical values

2.8.19. HOURSTAT - Hourly statistics

Synopsis

<operator> infile outfile

Description

This module computes statistical values over timesteps of the same hour. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps
of the same hour is written to outfile. The time of outfile is determined by the time in the middle
of all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators

hourmin

hourmax

hourrange

hoursum

hourmean

houravg

hourstd

hourstd1

hourvar

hourvarl

Hourly minimum
For every adjacent sequence tq, ..., t, of timesteps of the same hour it is:
o(t,z) = min{i(t',z),t1 <t' < t,}

Hourly maximum
For every adjacent sequence t1, ...,t, of timesteps of the same hour it is:
o(t,r) = max{i(t',z),t; <t' <t,}

Hourly range
For every adjacent sequence t1, ..., t, of timesteps of the same hour it is:
o(t,x) = range{i(t',x),t; <t' <t,}

Hourly sum
For every adjacent sequence t1, ..., t, of timesteps of the same hour it is:
o(t,z) = sum{i(t',z),t1 <t < t,}

Hourly mean
For every adjacent sequence %4, ...,t, of timesteps of the same hour it is:
o(t,z) = mean{i(t',z),t; <t <t,}

Hourly average
For every adjacent sequence tq, ..., t, of timesteps of the same hour it is:
oft,x) = aveli(t',z),ty <t < b,}

Hourly standard deviation

Normalize by n. For every adjacent sequence tq, ..., t,, of timesteps of the same hour
it is:

o(t,x) =std{i(t',x),t; <t' <t,}

Hourly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence ti,...,t, of timesteps of the same
hour it is:

o(t,z) = std1{i(t',z), 6, <t < t,}

Hourly variance

Normalize by n. For every adjacent sequence %4, ...,%, of timesteps of the same hour
it is:

o(t,z) = var{i(t',x),t; <t <t,}

Hourly variance (n-1)

Normalize by (n-1). For every adjacent sequence t,...,t, of timesteps of the same
hour it is:

o(t,x) = varl{i(t',x),t; <t <t,}

147

Statistical values Reference manual

Example

To compute the hourly mean of a time series use:

cdo hourmean infile outfile

2.8.20. HOURPCTL - Hourly percentile values
Synopsis

hourpctl,p infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps of the same hour in infilel. The algorithm uses
histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The
default number of histogram bins is 101. The default can be overridden by defining the environment
variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding
hourmin and hourmax operations, respectively. The time of outfile is determined by the time
in the middle of all contributing timesteps of infilel. This can be change with the CDO option
--timestat__date <first|middle|last>.

For every adjacent sequence tq, ..., t, of timesteps of the same hour it is:

o(t,z) = pth percentile{i(t,x),t; <t' <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the hourly 90th percentile of a time series use:

cdo hourmin infile minfile
cdo hourmax infile maxfile
cdo hourpctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo hourpctl,90 infile -hourmin infile -hourmax infile outfile

148

Reference manual Statistical values

2.8.21. DAYSTAT - Daily statistics
Synopsis

<operator >[,parameter] infile outfile

Description

This module computes statistical values over timesteps of the same day. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps
of the same day is written to outfile. The time of outfile is determined by the time in the middle
of all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators
daymin Daily minimum
For every adjacent sequence tq, ..., t, of timesteps of the same day it is:
o(t,z) = min{i(t',z),t1 <t' < t,}
daymax Daily maximum

For every adjacent sequence t1, ...,t, of timesteps of the same day it is:
o(t,x) = max{i(t',z),t; <t' <t,}

dayrange Daily range
For every adjacent sequence t1, ...,t, of timesteps of the same day it is:
o(t,r) = range{i(t',z),t; <t <t,}

daysum Daily sum
For every adjacent sequence t1, ...,t, of timesteps of the same day it is:
o(t,z) = sum{i(t',z),t1 <t < t,}

daymean Daily mean
For every adjacent sequence %1, ...,t, of timesteps of the same day it is:
o(t,z) = mean{i(t',z),t; <t <t,}

dayavg Daily average
For every adjacent sequence tq, ..., t, of timesteps of the same day it is:
oft,z) = avg{i(t',z),t1 <t' <t,}

daystd Daily standard deviation
Normalize by n. For every adjacent sequence t1, ..., t, of timesteps of the same day it
is:
o(t,x) =std{i(t',x),t; <t <t,}

daystdl Daily standard deviation (n-1)
Normalize by (n-1). For every adjacent sequence t1, ..., t,, of timesteps of the same day
it is:
o(t,x) = std1{i(t',x),t1 <t <t}

dayvar Daily variance
Normalize by n. For every adjacent sequence t1, ...,t, of timesteps of the same day it
is:
o(t,z) = var{i(t',x),t; <t <t,}

dayvarl Daily variance (n-1)
Normalize by (n-1). For every adjacent sequence t1, ..., t,, of timesteps of the same day
it is:
o(t,x) = varl{i(t',x),t; <t <t,}

149

Statistical values Reference manual

Parameter

complete_only BOOL Process the last day only if it is complete

Example

To compute the daily mean of a time series use:

cdo daymean infile outfile

2.8.22. DAYPCTL - Daily percentile values
Synopsis

daypctl,p infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps of the same day in infilel. The algorithm uses
histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The
default number of histogram bins is 101. The default can be overridden by defining the environment
variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding
daymin and daymax operations, respectively. The time of outfile is determined by the time in
the middle of all contributing timesteps of infilel. This can be change with the CDQO option
--timestat_ date <first|middle[last>.

For every adjacent sequence tq, ..., t,, of timesteps of the same day it is:

o(t,z) = pth percentile{i(t, x),t; <t' <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile of a time series use:

cdo daymin infile minfile
cdo daymax infile maxfile
cdo daypctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo daypctl,90 infile -daymin infile -daymax infile outfile

150

Reference manual

Statistical values

2.8.23. MONSTAT - Monthly statistics

Synopsis

<operator >[,parameter] infile outfile

Description

This module computes statistical values over timesteps of the same month. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of
the same month is written to outfile. The time of outfile is determined by the time in the middle
of all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators

monmin

monmax

monrange

monsum

monmean

monavg

monstd

monstdl

monvar

monvarl

Monthly minimum
For every adjacent sequence ty, ..., t, of timesteps of the same month it is:
o(t,z) = min{i(t',z),t; <t/ <t,}

Monthly maximum
For every adjacent sequence tq, ..., t, of timesteps of the same month it is:
o(t,x) = max{i(t',x),t; <t <t,}

Monthly range
For every adjacent sequence tq, ..., t,, of timesteps of the same month it is:
o(t,z) = range{i(t',z),t; <t <t,}

Monthly sum
For every adjacent sequence tq, ..., t,, of timesteps of the same month it is:
O(t, x) = sum{i(t’,x),tl <t < tn}

Monthly mean
For every adjacent sequence t1,...,t, of timesteps of the same month it is:
o(t,z) = mean{i(t',z),t; <t <t,}

Monthly average
For every adjacent sequence tq, ..., t, of timesteps of the same month it is:
oft,) = avg{i(t, x),t; <t <t}

Monthly standard deviation

Normalize by n. For every adjacent sequence t1, ..., t, of timesteps of the same month
it is:

o(t,x) =std{i(t',x),t; <t <t,}

Monthly standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence ti,...,t, of timesteps of the same
month it is:

o(t,x) = std1{i(t',z),t1 <t <t,}

Monthly variance

Normalize by n. For every adjacent sequence t1, ..., t,, of timesteps of the same month
it is:

o(t,x) = var{i(t',z),t; <t <t,}

Monthly variance (n-1)

Normalize by (n-1). For every adjacent sequence ¢y, ...,t, of timesteps of the same
month it is:

o(t,x) = varl{i(t',x),t; <t <t,}

151

Statistical values Reference manual

Parameter

complete_only BOOL Process the last month only if it is complete

Example

To compute the monthly mean of a time series use:

cdo monmean infile outfile

2.8.24. MONPCTL - Monthly percentile values
Synopsis

monpctlp infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps of the same month in infilel. The algorithm
uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively.
The default number of histogram bins is 101. The default can be overridden by defining the environ-
ment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding
monmin and monmax operations, respectively. The time of outfile is determined by the time in
the middle of all contributing timesteps of infilel. This can be change with the CDQO option
--timestat_ date <first|middle[last>.

For every adjacent sequence tq, ..., t, of timesteps of the same month it is:

o(t,z) = pth percentile{i(t, x),t; <t' <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile of a time series use:

cdo monmin infile minfile
cdo monmax infile maxfile
cdo monpctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo monpctl,90 infile -monmin infile -monmax infile outfile

152

Reference manual Statistical values

2.8.25. YEARMONSTAT - Yearly mean from monthly data
Synopsis

yearmonmean infile outfile

Description

This operator computes the yearly mean of a monthly time series. Each month is weighted with the
number of days per month. The time of outfile is determined by the time in the middle of all
contributing timesteps of infile.

For every adjacent sequence t1,...,t, of timesteps of the same year it is:
o(t,z) = mean{i(t',z),t; <t <t,}

Environment

CDO_TIMESTAT_DATE Sets the date information in outfile to the "first", "middle" or "last" contribut-
ing timestep of infile.

Example

To compute the yearly mean of a monthly time series use:

cdo yearmonmean infile outfile

153

Statistical values Reference manual

2.8.26. YEARSTAT - Yearly statistics
Synopsis

< operator >[,parameter] infile outfile

Description

This module computes statistical values over timesteps of the same year. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps
of the same year is written to outfile. The time of outfile is determined by the time in the middle
of all contributing timesteps of infile. This can be change with the CDO option --timestat_ date
<first|middle[last>.

Operators

yearmin Yearly minimum
For every adjacent sequence tq, ...,t, of timesteps of the same year it is:
o(t,z) = min{i(t',z),t; <t' <tp}

yearmax Yearly maximum
For every adjacent sequence t1,...,t, of timesteps of the same year it is:
o(t,r) = max{i(t',z),t; <t' <t,}

yearminidx Index of yearly minimum

For every adjacent sequence t1,...,t, of timesteps of the same year it is:
o(t,z) = minidx{i(t',z),t; <t <t,}

yearmaxidx Index of yearly maximum
For every adjacent sequence t1, ..., t, of timesteps of the same year it is:
o(t,x) = maxidx{i(t',z),t; <t <t,}

yearrange Yearly range
For every adjacent sequence t1, ...,t, of timesteps of the same year it is:
o(t,x) = range{i(t',x),t; <t' <t,}

yearsum Yearly sum
For every adjacent sequence t1, ...,t, of timesteps of the same year it is:
o(t,x) = sum{i(t',x),t; <t <t,}

yearmean Yearly mean
For every adjacent sequence t1, ...,t, of timesteps of the same year it is:
o(t,x) = mean{i(t',x),t; <t <t,}

yearavg Yearly average
For every adjacent sequence tq, ...,t, of timesteps of the same year it is:
O(t7.’1,‘) = an{i(tl?x)7t1 < t' < t’ﬂ}

yearstd Yearly standard deviation
Normalize by n. For every adjacent sequence t1, ...,t, of timesteps of the same year
it is:
o(t,z) = std{i(t',z),t; <t <t,}

yearstd1l Yearly standard deviation (n-1)
Normalize by (n-1). For every adjacent sequence t1, ..., ¢, of timesteps of the same
year it is:
o(t,z) = std1{i(t,z),t; <t <t,}

yearvar Yearly variance
Normalize by n. For every adjacent sequence t1, ..., t, of timesteps of the same year
it is:
o(t,z) = var{i(t',x),t; <t <t,}

154

Reference manual Statistical values

yearvarl Yearly variance (n-1)

Normalize by (n-1). For every adjacent sequence t1, ..., t, of timesteps of the same
year it is:
o(t,x) = varl{i(t',x),t; <t <t,}

Parameter

complete_only BOOL Process the last year only if it is complete

Note

The operators yearmean and yearavg compute only arithmetical means!

Example

To compute the yearly mean of a time series use:

cdo yearmean infile outfile

To compute the yearly mean from the correct weighted monthly mean use:

cdo yearmonmean infile outfile

155

Statistical values Reference manual

2.8.27. YEARPCTL - Yearly percentile values
Synopsis

yearpctl,p infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps of the same year in infilel. The algorithm uses
histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The
default number of histogram bins is 101. The default can be overridden by defining the environment
variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding
yearmin and yearmax operations, respectively. The time of outfile is determined by the time in
the middle of all contributing timesteps of infilel. This can be change with the CDO option
--timestat__date <first|middle|last>.

For every adjacent sequence tq, ..., t, of timesteps of the same year it is:

o(t,z) = pth percentile{i(t',z),t; <t <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the yearly 90th percentile of a time series use:

cdo yearmin infile minfile
cdo yearmax infile maxfile
cdo yearpctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo yearpctl,90 infile -yearmin infile -yearmax infile outfile

156

Reference manual

Statistical values

2.8.28. SEASSTAT - Seasonal statistics

Synopsis

<operator> infile outfile

Description

This module computes statistical values over timesteps of the same meteorological season. Depending
on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation
of timesteps of the same season is written to outfile. The time of outfile is determined by the
time in the middle of all contributing timesteps of infile. This can be change with the CDO option
—-timestat__date <first|middle|last>. Be careful about the first and the last output timestep, they
may be incorrect values if the seasons have incomplete timesteps.

Operators

seasmin

seasmax

seasrange

seassum

seasmean

seasavg

seasstd

seasstdl

seasvar

seasvarl

Seasonal minimum
For every adjacent sequence tq, ..., t, of timesteps of the same season it is:
o(t,z) = min{i(t',z),t1 <t < t,}

Seasonal maximum
For every adjacent sequence tq, ..., t, of timesteps of the same season it is:
o(t,z) = max{i(t',z),t; <t' <t,}

Seasonal range
For every adjacent sequence tq, ..., t, of timesteps of the same season it is:
O(t,CC) = range{i(t’,x),tl S t S tn}

Seasonal sum
For every adjacent sequence tq, ..., t, of timesteps of the same season it is:
o(t,x) = sum{i(t',x),t; <t <t,}

Seasonal mean
For every adjacent sequence tq, ..., ¢, of timesteps of the same season it is:
o(t,z) = mean{i(t',z),t; <t' <t,}

Seasonal average
For every adjacent sequence tq, ..., t, of timesteps of the same season it is:
o(t,x) = avg{i(t' z),t1 <t/ <t,}

Seasonal standard deviation

Normalize by n. For every adjacent sequence %1, ..., %, of timesteps of the same season
it is:

o(t,x) = std{i(t',x),t; <t <t,}

Seasonal standard deviation (n-1)

Normalize by (n-1). For every adjacent sequence ti,...,t, of timesteps of the same

season it is:
o(t,z) = std1{i(t',z), ty <t <t,}

Seasonal variance

Normalize by n. For every adjacent sequence t1, ..., ¢, of timesteps of the same season
it is:

o(t,z) = var{i(t',z),t; <t/ < t,}

Seasonal variance (n-1)

Normalize by (n-1). For every adjacent sequence t1,...,t, of timesteps of the same

season it is:
o(t,x) = varl{i(t',x),t; <t <t,}

157

Statistical values Reference manual

Example

To compute the seasonal mean of a time series use:

cdo seasmean infile outfile

2.8.29. SEASPCTL - Seasonal percentile values

Synopsis

seaspctl,p infilel infile2 infile3 outfile

Description

This operator computes percentiles over all timesteps in infilel of the same season. The algorithm
uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively.
The default number of histogram bins is 101. The default can be overridden by defining the environ-
ment variable CDO_PCTL_NBINS. The files infile2 and infile3 should be the result of corresponding
seasmin and seasmax operations, respectively. The time of outfile is determined by the time in
the middle of all contributing timesteps of infilel. This can be change with the CDO option --
timestat__date <first|middle|last>. Be careful about the first and the last output timestep, they may
be incorrect values if the seasons have incomplete timesteps.

For every adjacent sequence t1, ..., t, of timesteps of the same season it is:

o(t,z) = pth percentile{i(t, x),t; <t' <t,}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the seasonal 90th percentile of a time series use:

cdo seasmin infile minfile
cdo seasmax infile maxfile
cdo seaspctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo seaspctl,90 infile -seasmin infile -seasmax infile outfile

158

Reference manual

Statistical values

2.8.30. YHOURSTAT - Multi-year hourly statistics

Synopsis

<operator> infile outfile

Description

This module computes statistical values of each hour and day of year. Depending on the chosen
operator the minimum, maximum, range, sum, average, variance or standard deviation of each hour
and day of year in infile is written to outfile. The date information in an output field is the date
of the last contributing input field.

Operators

yhourmin

yhourmax

yhourrange

yhoursum

yhourmean

yhouravg

yhourstd

yhourstd1

Multi-year hourly minimum
0(0001, x) = min{i(t, z),day(i(t)) = 0001}

0(8784, x) = min{i(t,x),day(i(t)) = 8784}
Multi-year hourly maximum

0(0001, z) = max{i(t, z),day(i(t)) = 0001}

0(8784, x) = max{i(t,x),day(i(t)) = 8784}
Multi-year hourly range

0(0001, z) = range{i(¢, z), day(i(t)) = 0001}

0(8784, x) = range{i(t, z),day(i(t)) = 8784}
Multi-year hourly sum

0(0001, z) = sum{i(t, z), day(i(t)) = 0001}

0(8784,) = sum{i(t, z), day(i(t)) = 8784}
Multi-year hourly mean

0(0001, z) = mean{i(t, z), day(i(t)) = 0001}

0(8784, x) = mean{i(t, x), day(i(t)) = 8784}
Multi-year hourly average

0(0001, z) = avg{i(t,z),day(i(t)) = 0001}

0(8784,x) = avg{i(t,x),day(i(t)) = 8784}

Multi-year hourly standard deviation
Normalize by n.

0(0001, z) = std{i(t, =), day(i(t)) = 0001}

0(8784,x) = std{i(t,.x), day(i(t)) = 8784}

Multi-year hourly standard deviation (n-1)
Normalize by (n-1).

159

Statistical values Reference manual

0(0001,) = std1{i(¢, x),day(i(t)) = 0001}

0(8784,x) = stdl{i(t., x),day(i(t)) = 8784}

yhourvar Multi-year hourly variance
Normalize by n.

0(0001,) = var{i(t,), day(i(¢)) = 0001}

0(8784,x) = Var{i(t,'z), day(i(t)) = 8784}

yhourvarl Multi-year hourly variance (n-1)
Normalize by (n-1).

0(0001,) = var1{i(t, z),day(i(¢)) = 0001}

0(8784,x) = varl{i(t; x),day(i(t)) = 8784}

160

Reference manual Statistical values

2.8.31. DHOURSTAT - Multi-day hourly statistics
Synopsis

<operator> infile outfile

Description

This module computes statistical values of each hour of day. Depending on the chosen operator
the minimum, maximum, range, sum, average, variance or standard deviation of each hour of day
in infile is written to outfile. The date information in an output field is the date of the last
contributing input field.

Operators
dhourmin Multi-day hourly minimum
0(01,2) = min{i(t, z), day(i(t)) = 01}
0(24,) = min{i(t, x), day(i(t)) = 24}
dhourmax Multi-day hourly maximum

0(01, x) = max{i(t,z),day(i(t)) = 01}

0(24,x) = max{i(t.7 x),day(i(t)) = 24}

dhourrange Multi-day hourly range
0(01, x) = range{i(t, z), day(i(t)) = 01}

o(24,z) = range{i(.t,:c),day(i(t)) =24}

dhoursum Multi-day hourly sum
0(01, z) = sum{i(t, z), day(i(t)) = 01}

0(24,x) = sum{i(t.7 x),day(i(t)) = 24}

dhourmean Multi-day hourly mean
0(01,2) = mean{i(t, x),day(i(t)) = 01}

o(24,z) = mean{i(;f,x), day(i(t)) = 24}

dhouravg Multi-day hourly average
0(01,z) = avg{i(t,z),day(i(t)) = 01}

0(24,x) = avg{i(t,.x),day(i(t)) =24}

dhourstd Multi-day hourly standard deviation
Normalize by n.

0(01, z) = std{i(t, z),day(i(t)) = 01}

o(24,x) = std{i(t,.x),day(i(t)) =24}

dhourstd1 Multi-day hourly standard deviation (n-1)
Normalize by (n-1).

161

Statistical values

Reference manual

dhourvar

dhourvarl

0(01,z) = std1{i(t,x),day(i(t)) = 01}

0(24,x) = stdl{i(t; x),day(i(t)) = 24}

Multi-day hourly variance
Normalize by n.

0(01,z) = var{i(t, z),day(i(t)) = 01}

0(24,z) = var{z‘(t,.x), day(i(t)) = 24}

Multi-day hourly variance (n-1)
Normalize by (n-1).

0(01,z) = varl{i(t, z),day(i(t)) = 01}

0(24,x) = Varl{i(t-7 x),day(i(t)) = 24}

162

Reference manual Statistical values

2.8.32. DMINUTESTAT - Multi-day by the minute statistics
Synopsis

<operator> infile outfile

Description

This module computes statistical values of each minute of day. Depending on the chosen operator
the minimum, maximum, range, sum, average, variance or standard deviation of each minute of day
in infile is written to outfile. The date information in an output field is the date of the last
contributing input field.

Operators
dminutemin Multi-day by the minute minimum
0(01, 2) = min{i(t, z), day(i(t)) = 01}
0(1440, z) = min{i(t, z), day(i(t)) = 1440}
dminutemax Multi-day by the minute maximum
0(01, x) = max{i(t,), day(i(t)) = 01}
0(1440, z) = max{i(t,x),day(i(t)) = 1440}
dminuterange Multi-day by the minute range
0(01,) = range{i(t,), day(i(t)) = 01}
0(1440, z) = range{i(t, z), day(i(t)) = 1440}
dminutesum Multi-day by the minute sum
0(01, x) = sum{i(t, z),day(i(t)) = 01}
0(1440, z) = sum{i(t, z), day(i(t)) = 1440}
dminutemean Multi-day by the minute mean
0(01,2) = mean{i(t, x),day(i(t)) = 01}
0(1440, z) = mean{i(t, z), day(i(t)) = 1440}
dminuteavg Multi-day by the minute average
0(01,x) = avg{i(t,z),day(i(t)) = 01}
0(1440,) = avg{i(t,x),day(i(t)) = 1440}
dminutestd Multi-day by the minute standard deviation
Normalize by n.
0(01, z) = std{i(t, z),day(i(t)) = 01}
0(1440,) = std{i(t, z), day(i(t)) = 1440}
dminutestdl Multi-day by the minute standard deviation (n-1)

Normalize by (n-1).

163

Statistical values Reference manual

0(01,x) = std1{i(t,x),day(i(t)) = 01}

0(1440,x) = stdl{i(t., x),day(i(t)) = 1440}

dminutevar Multi-day by the minute variance
Normalize by n.

0(01,x) = var{i(t, z),day(i(t)) = 01}

0(1440,x) = var{i(t,.z),day(i(t)) = 1440}

dminutevarl Multi-day by the minute variance (n-1)
Normalize by (n-1).

0(01,z) = var1{i(t,z),day(i(t)) = 01}

0(1440, x) = Varl{i(t; x),day(i(t)) = 1440}

164

Reference manual Statistical values

2.8.33. YDAYSTAT - Multi-year daily statistics
Synopsis

<operator> infile outfile

Description

This module computes statistical values of each day of year. Depending on the chosen operator
the minimum, maximum, range, sum, average, variance or standard deviation of each day of year
in infile is written to outfile. The date information in an output field is the date of the last
contributing input field.

Operators
ydaymin Multi-year daily minimum
0(001, z) = min{i(¢, x),day(i(t)) = 001}
0(366, x) = min{i(¢,z),day(i(t)) = 366}
ydaymax Multi-year daily maximum

0(001, z) = max{i(t, z), day(i(t)) = 001}

0(366,x) = max{i(t; x),day(i(t)) = 366}

ydayrange Multi-year daily range
0(001, z) = range{i(t, z),day(i(t)) = 001}

0(366, x) = range{i(t, z),day(i(t)) = 366}
ydaysum Multi-year daily sum

0(001, z) = sum{i(t, z), day(i(t)) = 001}

0(366, x) = sum{i(t,z), day(i(t)) = 366}
ydaymean Multi-year daily mean

0(001, 2) = mean{i(t,), day(i(¢)) = 001}

0(366,x) = mean{z’(%, x),day(i(t)) = 366}

ydayavg Multi-year daily average
0(001,) = avg{i(t,z),day(i(t)) = 001}

0(366,x) = avg{i(t,.a:),day(i(t)) = 366}

ydaystd Multi-year daily standard deviation
Normalize by n.

0(001, z) = std{i(t, z), day(i(t)) = 001}

0(366,x) = std{i(t,.x), day(i(t)) = 366}

ydaystd1 Multi-year daily standard deviation (n-1)
Normalize by (n-1).

165

Statistical values

Reference manual

0(001,) = std1{i(t, z), day(i(t)) = 001}

0(366,x) = stdl{i(t'7 x),day(i(t)) = 366}

ydayvar Multi-year daily variance
Normalize by n.

0(001,) = var{i(t, z), day(i(t)) = 001}

0(366,x) = var{i(t,.x), day(i(t)) = 366}

ydayvarl Multi-year daily variance (n-1)
Normalize by (n-1).

0(001, z) = var1{i(t,z),day(i(¢)) = 001}

0(366,x) = varl{i(t', x),day(i(t)) = 366}

Example

To compute the daily mean over all input years use:

cdo ydaymean infile outfile

166

Reference manual Statistical values

2.8.34. YDAYPCTL - Multi-year daily percentile values
Synopsis

ydaypctl,p infilel infile2 infile3 outfile

Description

This operator writes a certain percentile of each day of year in infilel to outfile. The algorithm
uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively.
The default number of histogram bins is 101. The default can be overridden by setting the environment
variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result
of corresponding ydaymin and ydaymax operations, respectively. The date information in an output
field is the date of the last contributing input field.

0(001,) = pth percentile{i(t,z),day(i(t)) = 001}
0(366,) = pth percentile{i(t,z),day(i(t)) = 366}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the daily 90th percentile over all input years use:

cdo ydaymin infile minfile
cdo ydaymax infile maxfile
cdo ydaypctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo ydaypctl,90 infile -ydaymin infile -ydaymax infile outfile

167

Statistical values Reference manual

2.8.35. YMONSTAT - Multi-year monthly statistics
Synopsis

<operator> infile outfile

Description

This module computes statistical values of each month of year. Depending on the chosen operator
the minimum, maximum, range, sum, average, variance or standard deviation of each month of year
in infile is written to outfile. The date information in an output field is the date of the last con-
tributing input field. This can be change with the CDO option --timestat_ date <first|middle|last>.

Operators
ymonmin Multi-year monthly minimum
0(01, z) = min{i(¢, z), month(i(¢)) = 01}
0(12,) = min{i(t, x), month(i(¢)) = 12}
ymonmax Multi-year monthly maximum
0(01, z) = max{i(t, z), month(i(t)) = 01}
0(12, x) = max{i(t,), month(i(t)) = 12}
ymonrange Multi-year monthly range
0(01, z) = range{i(t, z), month(i(t)) = 01}
0(12, z) = range{i(t, x), month(i(¢)) = 12}
ymonsum Multi-year monthly sum
0(01, z) = sum{i(¢,), month(i(t)) = 01}
0(12, 2) = sum{i(¢,), month(i(t)) = 12}
ymonmean Multi-year monthly mean
0(01,2) = mean{i(t, x), month(i(¢)) = 01}
0(12, z) = mean{i(¢,), month(i(¢)) = 12}
ymonavg Multi-year monthly average
0(01,2) = avg{i(t, z), month(i(t)) = 01}
0(12,z) = avg{i(t, x), month(i(¢)) = 12}
ymonstd Multi-year monthly standard deviation
Normalize by n.
0(01,) = std{i(t,), month(i(t)) = 01}
0(12,) = std{i(t,), month(i(t)) = 12}
ymonstd1 Multi-year monthly standard deviation (n-1)

Normalize by (n-1).

168

Reference manual Statistical values

0(01, x) = std1{i(t, x), month(i(t)) = 01}

0(12,x) = stdl{i(t,é%month(i(t)) =12}

ymonvar Multi-year monthly variance
Normalize by n.

0(01,z) = var{i(t,z), month(i(t)) = 01}

o(12,z) = var{i(t,x.), month(i(t)) = 12}

ymonvarl Multi-year monthly variance (n-1)
Normalize by (n-1).

0(01,z) = var1{i(¢, z), month(i(¢)) = 01}

0(12,x) = varl{i(t,a.:),month(i(t)) =12}

Example

To compute the monthly mean over all input years use:

cdo ymonmean infile outfile

169

Statistical values Reference manual

2.8.36. YMONPCTL - Multi-year monthly percentile values
Synopsis

ymonpctl,p infilel infile2 infile3 outfile

Description

This operator writes a certain percentile of each month of year in infilel to outfile. The algorithm
uses histograms with minimum and maximum bounds given in infile2 and infile3, respectively.
The default number of histogram bins is 101. The default can be overridden by setting the environment
variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of
corresponding ymonmin and ymonmax operations, respectively. The date information in an output
field is the date of the last contributing input field.

0(01, 2) = pth percentile{i(t, z), month(i(t)) = 01}
0(12,z) = pth percentile{i(t, z), month(i(t)) = 12}

Parameter

p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the monthly 90th percentile over all input years use:

cdo ymonmin infile minfile
cdo ymonmax infile maxfile
cdo ymonpctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo ymonpctl,90 infile -ymonmin infile -ymonmax infile outfile

170

Reference manual Statistical values

2.8.37. YSEASSTAT - Multi-year seasonal statistics
Synopsis

<operator> infile outfile

Description

This module computes statistical values of each season. Depending on the chosen operator the
minimum, maximum, range, sum, average, variance or standard deviation of each season in infile
is written to outfile. The date information in an output field is the date of the last contributing

input field.
Operators
yseasmin Multi-year seasonal minimum
o(1,xz) = min{i(t,), month(i(t)) = 12, 01, 02}
0(2,x) = min{i(t,), month(i(t)) = 03 04, 05}
0(3,x) = min{i(t,), month(i(t)) = 06, 07, 08}
o(4,x) = min{i(t,), month(i(t)) = 09, 10, 11}
yseasmax Multi-year seasonal maximum
o(1,x) = max{i(t, z), month(i(t)) = 12, 01, 02}
0(2,) = max{i(t,x), month(i(¢t)) = 03, 04, 05}
0(3,z) = max{i(t,x), month(i(¢t)) = 06, 07, 08}
o(4,x) = max{i(t, z), month(i(t)) = 09, 10, 11}
yseasrange Multi-year seasonal range
o(1,x) = range{i(t, z), month(i(t)) = 12, 01, 02}
0(2,x) = range{i(t,), month(i(t)) = 03, 04, 05}
o(3,x) = range{i(t,), month(i(t)) = 06, 07, 08}
o(4,x) = range{i(t,), month(i(¢)) = 09, 10, 11}
yseassum Multi-year seasonal sum
o(1,xz) = sum{i(¢t, z), month(i(t)) = 12, 01, 02}
0(2,) = sum{i(t, z), month(i(t)) = 03, 04, 05}
0(3,) = sum{i(t, z), month(i(t)) = 06, 07, 08}
o(4, x) = sum{i(t,), month(i(¢)) = 09, 10, 11}
yseasmean Multi-year seasonal mean
o(1,z) = mean{i(t, x), month(i(¢)) = 12, 01, 02}
0(2,x) = mean{i(t, z), month(i(¢)) = 03, 04, 05}
0(3,x) = mean{i(t, z), month(i(¢)) = 06, 07, 08}
o(4,x) = mean{i(t, z), month(i(¢)) = 09, 10, 11}
yseasavg Multi-year seasonal average
o(1,x) = avg{i(t,z), month(i(t)) = 12, 01, 02}
0(2,x) = avg{i(t,z), month(i(t)) = 03, 04, 05}
o(3,z) = avg{i(t,), month(i(t)) = 06, 07, 08}
o(4,z) = avg{i(t,), month(i(t)) = 09, 10, 11}
yseasstd Multi-year seasonal standard deviation
o(1,x) = std{i(t, z), month(i(t)) = 12, 01, 02}
0(2,x) = std{i(t, z), month(i(t)) = 03, 04, 05}
o(3,x) = std{ (t,x), month(i(t)) = 06, 07, 08}
o(4, x) = std{i(t, z), month(i(t)) = 09, 10, 11}

171

Statistical values Reference manual

yseasstd1l Multi-year seasonal standard deviation (n-1)
o(1,z) = std1{i(t,), month(i(¢)) = 12, 01, 02}

0(2,x) = std1{i(t,), month(i(¢)) = 03, 04, 05}
0(3,x) = std1{i(t,), month(i(t)) = 06, 07, 08}
o(4,x) = std1{i(t, z), month(i(t)) = 09, 10, 11}
yseasvar Multi-year seasonal variance
o(1,z) = var{i(t,x), month(i(t)) = 12, 01, 02}
0(2,z) = var{i(t,x), month(i(t)) = 03, 04, 05}
0(3,x) = var{i(t,x), month(i(t)) = 06, 07, 08}
o(4,x) = var{i(t,x), month(i(t)) = 09, 10, 11}
yseasvarl Multi year seasonal variance (n-1)
,x) = varl{i(t,z), month(i(t)) = 12, 01, 02}
0(,x) = varl{i(¢, z), month(i(t)) = 03, 04, 05}
0(3,x) = var1{i(¢t,z), month(i(t)) = 06, 07, 08}
o(4,x) = var1{i(¢t,z), month(i(t)) = 09, 10, 11}

Example

To compute the seasonal mean over all input years use:

cdo yseasmean infile outfile

172

Reference manual Statistical values

2.8.38. YSEASPCTL - Multi-year seasonal percentile values
Synopsis

yseaspctl,p infilel infile2 infile3 outfile

Description

This operator writes a certain percentile of each season in infilel to outfile. The algorithm uses
histograms with minimum and maximum bounds given in infile2 and infile3, respectively. The
default number of histogram bins is 101. The default can be overridden by setting the environment
variable CDO_PCTL_NBINS to a different value. The files infile2 and infile3 should be the result of
corresponding yseasmin and yseasmax operations, respectively. The date information in an output
field is the date of the last contributing input field.

o(1,x) = pth percentile{i(¢,z), month(i(t)) = 12, 01, 02}
0(2,x) = pth percentile{i(¢,z), month(i(t)) = 03, 04, 05}
0(3,x) = pth percentile{i(¢,z), month(i(t)) = 06, 07, 08}
o(4,x) = pth percentile{i(¢,z), month(i(t)) = 09, 10, 11}
Parameter
p FLOAT Percentile number in 0, ..., 100

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

To compute the seasonal 90th percentile over all input years use:

cdo yseasmin infile minfile
cdo yseasmax infile maxfile
cdo yseaspctl,90 infile minfile maxfile outfile

Or shorter using operator piping:

cdo yseaspctl,90 infile —yseasmin infile -yseasmax infile outfile

173

Statistical values Reference manual

2.8.39. YDRUNSTAT - Multi-year daily running statistics
Synopsis

<operator >,nts[,rm=c| infile outfile

Description

This module writes running statistical values for each day of year in infile to outfile. Depending
on the chosen operator, the minimum, maximum, sum, average, variance or standard deviation of all
timesteps in running windows of which the medium timestep corresponds to a certain day of year is
computed. The date information in an output field is the date of the timestep in the middle of the last
contributing running window. Note that the operator have to be applied to a continuous time series
of daily measurements in order to yield physically meaningful results. Also note that the output time
series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends (nts-1)/2
timesteps before the last one. For input data which are complete but not continuous, such as time
series of daily measurements for the same month or season within different years, the operator yields
physically meaningful results only if the input time series does include the (nts-1)/2 days before and
after each period of interest.

Operators
ydrunmin Multi-year daily running minimum
0(001, z) = min{i(t, z),i(t + 1,), ..., i(t + nts — 1, x); day[(i(¢t + (nts — 1)/2)] = 001}
0(366,) = min{i(t,z),i(t + 1,x), ...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
ydrunmax Multi-year daily running maximum
0(001, x) = max{i(t,z),i(t + 1, x),....i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 001}
0(366, x) = max{i(t,z),i(t + 1,), ...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
ydrunsum Multi-year daily running sum
0(001,) = sum{i(¢t,z),i(t + 1,2), ..., i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 001}
0(366, z) = sum{i(t,z),i(t + 1,2),...,3(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
ydrunmean Multi-year daily running mean
0(001,) = mean{i(t,x),i(t + 1,z),...,i(t + nts — 1, 2); day[(i(¢t + (nts — 1)/2)] = 001}
0(366,x) = mean{i(t,x),i(t + 1,z),...,i(t + nts — 1, x); day[(i(t + (nts — 1)/2)] = 366}
ydrunavg Multi-year daily running average
0(001,2) = avg{i(t,x),i(t + 1,z),...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 001}
0(366,x) = avg{i(t,z),i(t + 1,z),...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
ydrunstd Multi-year daily running standard deviation

Normalize by n.

0(001, z) = std{i(t, z),i(t + 1, z),....i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 001}

0(366, x) = std{i(t,z),i(t + 1,x),...,3(t + 'nts —1,x);day[(i(t + (nts — 1)/2)] = 366}

174

Reference manual

Statistical values

ydrunstd1l Multi-year daily running standard deviation (n-1)
Normalize by (n-1).
0(001, z) = std1{i(t,x),i(t + 1,2),...,i(t + nts — 1,x); day[(i(t + (nts — 1)/2)] = 001}
0(366, x) = std1{i(t,x),i(t + 1,z),...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
ydrunvar Multi-year daily running variance
Normalize by n.
0(001,x) = var{i(t,z),i(t + 1,x),...,i(t + nts — 1, x); day[(i(t + (nts — 1)/2)] = 001}
0(366,x) = var{i(t,z),i(t + 1,2),...,i(t + nts — 1, x); day[(i(t + (nts — 1)/2)] = 366}
ydrunvarl Multi-year daily running variance (n-1)
Normalize by (n-1).
0(001,) = varl{i(t,z),i(t + 1, x), ..., i(t + nts — 1, z); day|[(i(t + (nts — 1)/2)] = 001}
0(366, x) = var1{i(t,z),i(t + 1,), ...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}
Parameter
nts INTEGER Number of timesteps

rm=c STRING

Example

Read method circular

Assume the input data provide a continuous time series of daily measurements. To compute the
running multi-year daily mean over all input timesteps for a running window of five days use:

cdo ydrunmean,5 infile outfile

Note that except for the standard deviation the results of the operators in this module are equivalent
to a composition of corresponding operators from the YDAYSTAT and RUNSTAT modules. For
instance, the above command yields the same result as:

cdo ydaymean -runmean,5 infile outfile

175

Statistical values Reference manual

2.8.40. YDRUNPCTL - Multi-year daily running percentile values

Synopsis

ydrunpctl,p,nts[,;rm=c[,pm=r8]] infilel infile2 infile3 outfile

Description

This operator writes running percentile values for each day of year in infilel to outfile. A certain
percentile is computed for all timesteps in running windows of which the medium timestep corresponds
to a certain day of year. The algorithm uses histograms with minimum and maximum bounds given
in infile2 and infile3, respectively. The default number of histogram bins is 101. The default
can be overridden by setting the environment variable CDO_PCTL_NBINS to a different value. The files
infile2 and infile3 should be the result of corresponding ydrunmin and ydrunmax operations,
respectively. The date information in an output field is the date of the timestep in the middle of
the last contributing running window. Note that the operator have to be applied to a continuous
time series of daily measurements in order to yield physically meaningful results. Also note that the
output time series begins (nts-1)/2 timesteps after the first timestep of the input time series and ends
(nts-1)/2 timesteps before the last. For input data which are complete but not continuous, such as
time series of daily measurements for the same month or season within different years, the operator
only yields physically meaningful results if the input time series does include the (nts-1)/2 days before
and after each period of interest.

0(001, x) = pth percentile{i(t,z),i(t + 1,), ...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 001}

0(366, x) = pth percentile{i(t,x),i(t + 1,), ...,i(t + nts — 1, z); day[(i(t + (nts — 1)/2)] = 366}

Parameter
p FLOAT Percentile number in 0, ..., 100
nts INTEGER Number of timesteps
rm=c STRING Read method circular
pm=r§8 STRING Percentile method rtype8

Environment

CDO_PCTL_NBINS Sets the number of histogram bins. The default number is 101.

Example

Assume the input data provide a continuous time series of daily measurements. To compute the
running multi-year daily 90th percentile over all input timesteps for a running window of five days
use:

cdo ydrunmin,5 infile minfile
cdo ydrunmax,5 infile maxfile
cdo ydrunpctl,90,5 infile minfile maxfile outfile

Or shorter using operator piping:

cdo ydrunpctl,90,5 infile -ydrunmin infile -ydrummax infile outfile

176

Reference manual

Correlation and co.

2.9. Correlation and co.

This sections contains modules for correlation and co. in grid space and over time.
In this section the abbreviations as in the following table are used:

Covariance 1 _ _
o n ;(azz T)(yi — 7)
-1 -1
. h n n n n
cova.r weighted by Z w Z wi |z — Z w; Z w; "
{w;,i=1,...,n} = = =1 =1

—1

n n
(D ws > wiy
j=1 j=1

Here is a short overview of all operators in this section:

fldcor Correlation in grid space
timcor Correlation over time
fldcovar Covariance in grid space
timcovar Covariance over time

177

Correlation and co. Reference manual

2.9.1. FLDCOR - Correlation in grid space
Synopsis

fldcor infilel infile2 outfile

Description

The correlation coeflicient is a quantity that gives the quality of a least squares fitting to the original
data. This operator correlates all gridpoints of two fields for each timestep. With

S(t) = {x,11(t, x) # missval Nia(t,x) # missval}

it is

S (tx)is(t o)w(x) — i (t,) ia(t,z) D, w(x)
o(t, 1) _ zeS(t) z€eS(t)

(> (o)) - i) ¥ w(fﬂ))(> gt @)w(x) —ig(tz) Y w(x)

z€S(t) zeS(t)

where w(x) are the area weights obtained by the input streams. For every timestep ¢ only those field
elements x belong to the sample, which have i (¢,) # missval and is(t, z) # missval.

2.9.2. TIMCOR - Correlation over time
Synopsis

timcor infilel infile2 outfile

Description

The correlation coefficient is a quantity that gives the quality of a least squares fitting to the original
data. This operator correlates each gridpoint of two fields over all timesteps. If there is only one
input field, the p-value (probability value) is also written out. With

S(x) = {t,i1(t,x) # missval Aia(t,) # missval}

it is

Z Zl(t7x)22(tvx) —-n Zl(tvx) Zg(t,.ﬁ)
teS(x)

(> il(t,x)Qnil(t,x)2>< > ig(t,I)Qnig(t,x)2>

teS(zx) teS(x)

o(l,z) =

For every gridpoint x only those timesteps ¢ belong to the sample, which have iy (¢, 2) # missval and
io(t, x) # missval.

178

Reference manual Correlation and co.

2.9.3. FLDCOVAR - Covariance in grid space
Synopsis

fldcovar infilel infile2 outfile

Description
This operator calculates the covariance of two fields over all gridpoints for each timestep. With
S(t) = {x,i1(t,x) # missval Aia(t,x) # missval}
it is

! >, w(@)i(t) >, w(@)iz(t, x)

. z€S(t) . z€S(t)
o(t,1) = Z w(z) Z w(z) | i1(t,z) — S w0 io(t,x) —
zeS(t) zeS(t) z€S(t) zeS(t)

where w(x) are the area weights obtained by the input streams. For every timestep ¢ only those field
elements x belong to the sample, which have 41 (¢,) # missval and is(t,) # missval.

2.9.4. TIMCOVAR - Covariance over time
Synopsis

timcovar infilel infile2 outfile

Description
This operator calculates the covariance of two fields at each gridpoint over all timesteps. With
S(x) = {t,i1(t,x) # missval Aia(t,x) # missval}
it is
olz)=n" Y (il(t,x) - m) (ig(t,x) - m)
teS(x)

For every gridpoint only those timesteps ¢ belong to the sample, which have i1 (¢, x) # missval and
i2(t, z) # missval.

179

Regression

Reference manual

2.10. Regression

This sections contains modules for linear regression of time series.

Here is a short overview of all operators in this section:

regres

detrend

trend

addtrend
subtrend

Regression
Detrend
Trend

Add trend
Subtract trend

180

Reference manual Regression

2.10.1. REGRES - Regression
Synopsis

regres[,equal] infile outfile

Description

The values of the input file infile are assumed to be distributed as N(a + bt, 0?) with unknown a,
b and o2. This operator estimates the parameter b. For every field element x only those timesteps ¢
belong to the sample S(x), which have i(t, z) # miss. It is

> (i(t,x)—#sl(z) > i(ﬂﬂﬁ)) <t—#sl(x> Z)t’>

teS(x) t'eS(x) t'eS(x

2
Z)(t#;@) 5 tl)

o(l,z) =
teS(x t'eS(x)

It is assumed that all timesteps are equidistant, if this is not the case set the parameter equal=false.

Parameter

equal BOOL Set to false for unequal distributed timesteps (default: true)
2.10.2. DETREND - Detrend time series
Synopsis

detrend[,equal] infile outfile

Description

Every time series in infile is linearly detrended. For every field element x only those timesteps ¢
belong to the sample S, which have i(¢,z) # miss. It is assumed that all timesteps are equidistant, if
this is not the case set the parameter equal=false. With

1 . 1
a(x) = 75(0) Z i(t,z) — b(x) 5@ Z t

teS(x) teS(x)

and

it is

o(t,x) = i(t,z) — (a(z) + b(x)t)

Parameter

equal BOOL Set to false for unequal distributed timesteps (default: true)

181

Regression Reference manual

Note

This operator has to keep the fields of all timesteps concurrently in the memory. If not enough
memory is available use the operators trend and subtrend.

Example

To detrend the data in infile and to store the detrended data in outfile use:

cdo detrend infile outfile

2.10.3. TREND - Trend of time series
Synopsis

trend[,equal] infile outfilel outfile2

Description

The values of the input file infile are assumed to be distributed as N(a + bt,0?) with unknown
a, b and ¢2. This operator estimates the parameter a and b. For every field element = only those
timesteps t belong to the sample S(z), which have i(¢, z) # miss. It is

1 1
o1(1,z) = S i) —b@) | e Dt
#5(z) teS(x) #5(x) teS(x)
and
> olithe) - X i)) [t— e X
teS(x) #5@) &5t #50) | Sl
02(1,1‘) = 2
Y |\tmmwmm Xt
teS(x) #5() t'eS(x)

Thus the estimation for a is stored in outfilel and that for b is stored in outfile2. To subtract the
trend from the data see operator subtrend. It is assumed that all timesteps are equidistant, if this is
not the case set the parameter equal=false.

Parameter

equal BOOL Set to false for unequal distributed timesteps (default: true)

182

Reference manual Regression

2.10.4. TRENDARITH - Add or subtract a trend
Synopsis

<operator>[equal] infilel infile2 infile3 outfile

Description

This module is for adding or subtracting a trend computed by the operator trend.

Operators

addtrend Add trend
It is

o(tyx) =i1(t, x) + (i2(1,2) + i5(1,2) - t)
where t is the timesteps.

subtrend Subtract trend
It is

o(t,x) = i1(t,x) — (i2(1,2) +i3(1,x) - t)

where t is the timesteps.

Parameter

equal BOOL Set to false for unequal distributed timesteps (default: true)

Example

The typical call for detrending the data in infile and storing the detrended data in outfile is:

cdo trend infile afile bfile
cdo subtrend infile afile bfile outfile

The result is identical to a call of the operator detrend:

cdo detrend infile outfile

183

EOFs Reference manual

2.11. EOFs

This section contains modules to compute Empirical Orthogonal Functions and - once they are computed
- their principal coefficients.
An introduction to the theory of principal component analysis as applied here can be found in:
Principal Component Analysis in Meteorology and Oceanography [Preisendorfer]
Details about calculation in the time- and spatial spaces are found in:
Statistical Analysis in Climate Research [vonStorch]

EOFs are defined as the eigen values of the scatter matrix (covariance matrix) of the data. For the sake of
simplicity, samples are regarded as time series of anomalies

(2(t)),t e {l,...,n}

of (column-) vectors z(t) with p entries (where p is the gridsize). Thus, using the fact, that z;(¢) are
anomalies, i.e.

=n"'Y () =0V1<j<p

=1

the scatter matrix S can be written as

3= [vWe(0] [vivein]|

t=1

where W is the diagonal matrix containing the area weight of cell pg in z at W(z,).

The matrix S has a set of orthonormal eigenvectors e;,j = 1,...p, which are called empirical orthogonal
functions (EOFs) of the sample z. (Please note, that e; is the eigenvector of S and not the weighted
eigen-vector which would be We;.) Let the corresponding eigenvalues be denoted \;. The vectors e; are
spatial patterns which explain a certain amount of variance of the time series z(t) that is related linearly
to A;j. Thus, the spatial pattern defined by the first eigenvector (the one with the largest eigenvalue) is the
pattern which explains a maximum possible amount of variance of the sample z(t). The orthonormality of
eigenvectors reads as

Zp: [(z,z e](x)} [W(xw)ek(x)} = zp:W(:mx)ej(Jer(z) = { ?Z; j illz

x=1 r=1

If all EOFs e; with A; # 0 are calculated, the data can be reconstructed from
P
ZW z,x)a;(t)e;(x)
Jj=1

where a; are called the principal components or principal coefficients or EOF coefficients of z. These
coeflicients - as readily seen from above - are calculated as the projection of an EOF e; onto a time step
of the data sample z(tg) as

zp:{ Wiz, z e](x)] { W(x,x)z(to,x)} — [\/VT’Z(tO)}T [\/We]},

r=

—

Here is a short overview of all operators in this section:

eof Calculate EOFs in spatial or time space
eoftime Calculate EOFs in time space

eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space
eofcoeff Calculate principal coefficients of EOFs

184

Reference manual EOFs

2.11.1. EOFS - Empirical Orthogonal Functions
Synopsis

<operator > neof infile outfilel outfile2

Description

This module calculates empirical orthogonal functions of the data in infile as the eigen values of
the scatter matrix (covariance matrix) S of the data sample z(¢). A more detailed description can be
found above.

Please note, that the input data are assumed to be anomalies.

If operator eof is chosen, the EOFs are computed in either time or spatial space, whichever is the
fastest. If the user already knows, which computation is faster, the module can be forced to perform
a computation in time- or gridspace by using the operators eoftime or eofspatial, respectively. This
can enhance performance, especially for very long time series, where the number of timesteps is larger
than the number of grid-points. Data in infile are assumed to be anomalies. If they are not, the
behavior of this module is not well defined. After execution outfilel will contain all eigen-values
and outfile2 the eigenvectors e_j. All EOFs and eigen-values are computed. However, only the
first neof EOFs are written to outfile2. Nonetheless, outfilel contains all eigen-values.

Missing values are not fully supported. Support is only checked for non-changing masks of missing
values in time. Although there still will be results, they are not trustworthy, and a warning will occur.
In the latter case we suggest to replace missing values by 0 in infile.

Operators
eof Calculate EOFs in spatial or time space
eoftime Calculate EOFs in time space

eofspatial Calculate EOFs in spatial space

eof3d Calculate 3-Dimensional EOFs in time space

Parameter
neof INTEGER Number of eigen functions

Environment

CDO_SVD_MODE Is used to choose the algorithm for eigenvalue calculation. Options are ’jacobi’
for a one-sided parallel jacobi-algorithm (only executed in parallel if -P flag
is set) and ’danielson_ lanczos’ for a non-parallel d/1 algorithm. The default
setting is ’jacobi’.

CDO_WEIGHT MODE It is used to set the weight mode. The default is ’off’. Set it to ’on’ for a
weighted version.

MAX_JACOBI_ITER Is the maximum integer number of annihilation sweeps that is executed if the
jacobi-algorithm is used to compute the eigen values. The default value is 12.

FNORM_PRECISION Is the Frobenius norm of the matrix consisting of an annihilation pair of eigen-
vectors that is used to determine if the eigenvectors have reached a sufficient
level of convergence. If all annihilation-pairs of vectors have a norm below this
value, the computation is considered to have converged properly. Otherwise, a
warning will occur. The default value le-12.

185

EOFs Reference manual

Example

To calculate the first 40 EOFs of a data-set containing anomalies use:

cdo eof,40 infile outfilel outfile?2

If the dataset does not containt anomalies, process them first, and use:

cdo sub infilel -timmean infilel anom file
cdo eof,40 anom file outfilel outfile2

186

Reference manual EOFs

2.11.2. EOFCOEFF - Principal coefficients of EOFs
Synopsis

eofcoeff infilel infile2 obase

Description

This module calculates the time series of the principal coefficients for given EOF (empirical orthogonal
functions) and data. Time steps in infilel are assumed to be the EOFs, time steps in infile2 are
assumed to be the time series. Note, that this operator calculates a non weighted dot product of the
fields in infilel and infile2. For consistency set the environment variable CDO_WEIGHT MODE=off
when using eof or eof3d. Given a set of EOFs e_j and a time series of data z(t) with p entries for
each timestep from which e_ j have been calculated, this operator calculates the time series of the
projections of data onto each EOF

P

0j(t) =) 2(t, x)e;(x)

X

There will be a seperate file o__j for the principal coefficients of each EOF.
As the EOFs e_j are uncorrelated, so are their principal coefficients, i.e.
0if j#£k ., ~ .
i(t t) = th (t) =0V 1,... .
S osont = { 31177, witn o0 =ovi< (1 p)

There will be a separate file containing a time series of principal coefficients with time information from
infile2 for each EOF in infilel. Output files will be numbered as <obase><neof><suffix>
where neof+1 is the number of the EOF (timestep) in infilel and suffix is the filename extension
derived from the file format.

Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

Example

To calculate principal coefficients of the first 40 EOFs of anom_file, and write them to files beginning
with obase, use:

export CDO_WEIGHT_MODE=off
cdo eof,40 anom_file eval_file eof_file
cdo eofcoeff eof file anom_file obase

The principal coefficients of the first EOF will be in the file 0base000000.nc (and so forth for higher
EOFs, nth EOF will be in obase<n-1>).

If the dataset infile does not containt anomalies, process them first, and use:

export CDO_WEIGHT_MODE=off

cdo sub infile -timmean infile anom file
cdo eof,40 anom_file eval file eof file
cdo eofcoeff eof file anom _file obase

187

Interpolation Reference manual

2.12. Interpolation

This section contains modules to interpolate datasets. There are several operators to interpolate horizontal
fields to a new grid. Some of those operators can handle only 2D fields on a regular rectangular grid. Vertical
interpolation of 3D variables is possible from hybrid model levels to height or pressure levels. Interpolation
in time is possible between time steps and years.

Here is a short overview of all operators in this section:

remapbil Bilinear interpolation

genbil Generate bilinear interpolation weights
remapbic Bicubic interpolation

genbic Generate bicubic interpolation weights
remapnn Nearest neighbor remapping

gennn Generate nearest neighbor remap weights
remapdis Distance weighted average remapping

gendis Generate distance weighted average remap weights
remapcon First order conservative remapping

gencon Generate 1st order conservative remap weights
remaplaf Largest area fraction remapping

genlaf Generate largest area fraction remap weights
remap Grid remapping

remapeta Remap vertical hybrid level

ml2pl Model to pressure level interpolation

ml2hl Model to height level interpolation

ap2pl Air pressure to pressure level interpolation
gh2hl Geometric height to height level interpolation
intlevel Linear level interpolation

intlevel3d Linear level interpolation onto a 3D vertical coordinate
intlevelx3d like intlevel3d but with extrapolation

inttime Interpolation between timesteps

intntime Interpolation between timesteps

intyear Interpolation between two years

188

Reference manual Interpolation

2.12.1. REMAPBIL - Bilinear interpolation
Synopsis

remapbil,grid infile outfile

genbil grid[,map3d] infile outfile

Description

This module contains operators for a bilinear remapping of fields between grids in spherical coordi-
nates. The interpolation is based on an adapted SCRIP library version. For a detailed description
of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral
curvilinear source grids. Below is a schematic illustration of the bilinear remapping:

b\ N/ N ——T\ v‘v —___\/ N/ N7 S\
Xé"X#X#X#X#X#X%g uuuuvggv
WAVAVAVAVAVAVAVAV¢

TAVAVAVAVAVAVAVAVAYS

\WAVAV/ W

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators
remapbil Bilinear interpolation
Performs a bilinear interpolation on all input fields.
genbil Generate bilinear interpolation weights
Generates bilinear interpolation weights for the first input field and writes the result
to a file. The format of this file is NetCDF following the SCRIP convention. Use the
operator remap to apply this remapping weights to a data file with the same source
grid. Set the parameter map3d=true to generate all mapfiles of the first 3D field with
varying masks. In this case the mapfiles will be named <outfile><xxx>.nc. xxx will
have five digits with the number of the mapfile.
Parameter
grid STRING Target grid description file or name
map3d BOOL Generate all mapfiles of the first 3D field

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature ’on’ or ’off’. By
default the extrapolation is enabled for circular grids.

189

Interpolation Reference manual

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a regular
Gaussian F32 grid, type:

cdo remapbil,F32 infile outfile

190

Reference manual Interpolation

2.12.2. REMAPBIC - Bicubic interpolation
Synopsis

remapbic,grid infile outfile

genbic,grid[,map3d] infile outfile

Description

This module contains operators for a bicubic remapping of fields between grids in spherical coordi-
nates. The interpolation is based on an adapted SCRIP library version. For a detailed description
of the interpolation method see [SCRIP]. This interpolation method only works on quadrilateral
curvilinear source grids. Below is a schematic illustration of the bicubic remapping:

b\ N/ N ——T\ v‘v "V S VARV AN V E— —
Xé"X#X#X#X#X#X%g uuuuvggv
WAVAVAVAVAVAVAVAV¢

TAVAVAVAVAVAVAVAVAYS

\WAVAV/ W

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators
remapbic Bicubic interpolation
Performs a bicubic interpolation on all input fields.
genbic Generate bicubic interpolation weights
Generates bicubic interpolation weights for the first input field and writes the result
to a file. The format of this file is NetCDF following the SCRIP convention. Use the
operator remap to apply this remapping weights to a data file with the same source
grid. Set the parameter map3d=true to generate all mapfiles of the first 3D field with
varying masks. In this case the mapfiles will be named <outfile><xxx>.nc. xxx will
have five digits with the number of the mapfile.
Parameter
grid STRING Target grid description file or name
map3d BOOL Generate all mapfiles of the first 3D field

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature ’on’ or ’off’. By
default the extrapolation is enabled for circular grids.

191

Interpolation Reference manual

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bicubic to a regular
Gaussian F32 grid, type:

cdo remapbic,F32 infile outfile

192

Reference manual

Interpolation

2.12.3. REMAPNN - Nearest neighbor remapping

Synopsis

remapnn grid infile outfile

gennn,grid[,map3d] infile outfile

Description

This module contains operators for a nearest neighbor remapping of fields between grids in spherical
coordinates. Below is a schematic illustration of the nearest neighbor remapping;:

\VAVAVAVAVAVAN
JAVAVAAVA

\WAVAVA' - VAVAN

VAVAVAVAVAY
\VAVAVAVAVAVAVAVAVA
{A%%ﬁﬁmvgg&e

\VAVAVAVAVAVAY
VAVAVAVAV# X7

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators
remapnn Nearest neighbor remapping
Performs a nearest neighbor remapping on all input fields.
gennn Generate nearest neighbor remap weights
Generates nearest neighbor remapping weights for the first input field and writes the
result to a file. The format of this file is NetCDF following the SCRIP convention.
Use the operator remap to apply this remapping weights to a data file with the same
source grid. Set the parameter map3d=true to generate all mapfiles of the first 3D field
with varying masks. In this case the mapfiles will be named <outfile><xxx>.nc. xxx
will have five digits with the number of the mapfile.
Parameter
grid STRING Target grid description file or name

map3d BOOL

Environment

REMAP_EXTRAPOLATE

CDO_GRIDSEARCH_RADIUS

Generate all mapfiles of the first 3D field

This variable is used to switch the extrapolation feature ’on’ or ’off’. By
default the extrapolation is enabled for this remapping method.

Grid search radius in degree, default 180 degree.

193

Interpolation Reference manual

2.12.4. REMAPDIS - Distance weighted average remapping
Synopsis

remapdis,grid[,neighbors] infile outfile

gendis,grid[,neighbors[,map3d]] infile outfile

Description

This module contains operators for an inverse distance weighted average remapping of the four nearest
neighbor values of fields between grids in spherical coordinates. The default number of 4 neighbors can
be changed with the neighbors parameter. Below is a schematic illustration of the distance weighted
average remapping:

\VAVAVAVAVAVAVAVATE,
VAVA%X#XVAVAVAVAV#X#
\VAVAVAVAVAVAVAVAYS
AVAVAVAVAVAVAVAYAYS
VAN A

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators

remapdis Distance weighted average remapping
Performs an inverse distance weighted averaged remapping of the nearest neighbor
values on all input fields.

gendis Generate distance weighted average remap weights

Generates distance weighted averaged remapping weights of the nearest neighbor values
for the first input field and writes the result to a file. The format of this file is NetCDF
following the SCRIP convention. Use the operator remap to apply this remapping
weights to a data file with the same source grid. Set the parameter map3d=true to
generate all mapfiles of the first 3D field with varying masks. In this case the mapfiles
will be named <outfile><xxx>.nc. xxx will have five digits with the number of the
mapfile.

Parameter
grid STRING Target grid description file or name
neighbors ~ INTEGER Number of nearest neighbors [default: 4]

map3d BOOL Generate all mapfiles of the first 3D field

194

Reference manual Interpolation

Environment

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature ’on’ or ’off’. By
default the extrapolation is enabled for this remapping method.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

195

Interpolation Reference manual

2.12.5. REMAPCON - First order conservative remapping
Synopsis

remapcon,grid infile outfile

gencon,grid[,map3d] infile outfile

Description

This module contains operators for a first order conservative remapping of fields between grids in
spherical coordinates. The operators in this module uses code from the YAC software package to
compute the conservative remapping weights. For a detailed description of the interpolation method
see [YAC]. The interpolation method is completely general and can be used for any grid on a sphere.
The search algorithm for the conservative remapping requires that no grid cell occurs more than once.
Below is a schematic illustration of the 1st order conservative remapping:

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators
remapcon First order conservative remapping
Performs a first order conservative remapping on all input fields.
gencon Generate 1st order conservative remap weights
Generates first order conservative remapping weights for the first input field and writes
the result to a file. The format of this file is NetCDF following the SCRIP convention.
Use the operator remap to apply this remapping weights to a data file with the same
source grid. Set the parameter map3d=true to generate all mapfiles of the first 3D
field with varying masks. In this case the mapfiles will be named <outfile><xxx>.nc.
xxx will have five digits with the number of the mapfile.
Parameter
grid STRING Target grid description file or name
map3d BOOL Generate all mapfiles of the first 3D field

196

Reference manual

Interpolation

Environment

CDO_REMAP_NORM

REMAP_AREA_MIN

Example

This variable is used to choose the normalization of the conservative interpola-
tion. By default CDO_REMAP_NORM is set to 'fracarea’. ’fracarea’ uses the sum of
the non-masked source cell intersected areas to normalize each target cell field
value. This results in a reasonable flux value but the flux is not locally con-
served. The option 'destarea’ uses the total target cell area to normalize each
target cell field value. Local flux conservation is ensured, but unreasonable flux
values may result.

This variable is used to set the minimum destination area fraction. The default
of this variable is 0.0.

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields conservative to a
regular Gaussian F32 grid, type:

cdo remapcon,F32 infile outfile

197

Interpolation Reference manual

2.12.6. REMAPLAF - Largest area fraction remapping
Synopsis

<operator >,grid infile outfile

Description

This module contains operators for a largest area fraction remapping of fields between grids in spherical
coordinates. The operators in this module uses code from the YAC software package to compute
the largest area fraction. For a detailed description of the interpolation method see [YAC]. The
interpolation method is completely general and can be used for any grid on a sphere. The search
algorithm for this remapping method requires that no grid cell occurs more than once. Below is a
schematic illustration of the largest area fraction conservative remapping:

AV

The figure on the left side shows the input data on a regular lon/lat source grid and on the right side
the remapped result on an unstructured triangular target grid. The figure in the middle shows the
input data with the target grid. Grid cells with missing value are grey colored.

Operators
remaplaf Largest area fraction remapping
Performs a largest area fraction remapping on all input fields.
genlaf Generate largest area fraction remap weights
Generates largest area fraction remapping weights for the first input field and writes
the result to a file. The format of this file is Net CDF following the SCRIP convention.
Use the operator remap to apply this remapping weights to a data file with the same
source grid.
Parameter
grid STRING Target grid description file or name
Environment

REMAP_AREA MIN This variable is used to set the minimum destination area fraction. The default
of this variable is 0.0.

198

Reference manual Interpolation

2.12.7. REMAP - Grid remapping
Synopsis

remap,grid,weights infile outfile

Description

Interpolation between different horizontal grids can be a very time-consuming process. Especially if
the data are on an unstructured and/or a large grid. In this case the interpolation process can be split
into two parts. Firstly the generation of the interpolation weights, which is the most time-consuming
part. These interpolation weights can be reused for every remapping process with the operator remap.
This operator remaps all input fields to a new horizontal grid. The remap type and the interpolation
weights of one input grid are read from a NetCDF file. More weights are computed if the input
fields are on different grids. The NetCDF file with the weights should follow the [SCRIP] convention.
Normally these weights come from a previous call to one of the genXXX operators (e.g. genbil) or
were created by the original SCRIP package.

Parameter
grid STRING Target grid description file or name
weights ~ STRING Interpolation weights (SCRIP NetCDF file)

Environment

CDO_REMAP_NORM This variable is used to choose the normalization of the conservative
interpolation. By default CDO_REMAP NORM is set to ’fracarea’. 'fracarea’
uses the sum of the non-masked source cell intersected areas to normalize
each target cell field value. This results in a reasonable flux value but
the flux is not locally conserved. The option 'destarea’ uses the total
target cell area to normalize each target cell field value. Local flux
conservation is ensured, but unreasonable flux values may result.

REMAP_EXTRAPOLATE This variable is used to switch the extrapolation feature ’on’ or ’off’.
By default the extrapolation is enabled for remapdis, remapnn and for
circular grids.

REMAP_AREA_MIN This variable is used to set the minimum destination area fraction. The
default of this variable is 0.0.

CDO_GRIDSEARCH_RADIUS Grid search radius in degree, default 180 degree.

Example

Say infile contains fields on a quadrilateral curvilinear grid. To remap all fields bilinear to a regular
Gaussian F32 grid use:

cdo genbil,F32 infile remapweights.nc
cdo remap,F32,remapweights.nc infile outfile

The result will be the same as:

cdo remapbil,F32 infile outfile

199

Interpolation Reference manual

2.12.8. REMAPETA - Remap vertical hybrid level

Synopsis

remapeta,vct/,oro] infile outfile

Description

This operator interpolates between different vertical hybrid levels. This include the preparation of
consistent data for the free atmosphere. The procedure for the vertical interpolation is based on the
HIRLAM scheme and was adapted from [INTERA]. The vertical interpolation is based on the vertical
integration of the hydrostatic equation with few adjustments. The basic tasks are the following one:

« at first integration of hydrostatic equation

o extrapolation of surface pressure

o Planetary Boundary-Layer (PBL) proutfile interpolation
 interpolation in free atmosphere

e merging of both proutfiles

« final surface pressure correction

The vertical interpolation corrects the surface pressure. This is simply a cut-off or an addition of
air mass. This mass correction should not influence the geostrophic velocity field in the middle
troposhere. Therefore the total mass above a given reference level is conserved. As reference level the
geopotential height of the 400 hPa level is used. Near the surface the correction can affect the vertical
structure of the PBL. Therefore the interpolation is done using the potential temperature. But in
the free atmosphere above a certain n (n=0.8 defining the top of the PBL) the interpolation is done
linearly. After the interpolation both proutfiles are merged. With the resulting temperature/pressure
correction the hydrostatic equation is integrated again and adjusted to the reference level finding the
final surface pressure correction. A more detailed description of the interpolation can be found in
[INTERA]. This operator requires all variables on the same horizontal grid.

Parameter

vet STRING File name of an ASCII dataset with the vertical coordinate table

oro STRING File name with the orography (surf. geopotential) of the target dataset (optional)
Environment

REMAPETA_PTOP Sets the minimum pressure level for condensation. Above this level the humidity
is set to the constant 1.E-6. The default value is 0 Pa.

Note

The code numbers or the variable names of the required parameter have to follow the [ECHAM]
convention.

Use the sinfo command to test if your vertical coordinate system is recognized as hybrid system.

In case remapeta complains about not finding any data on hybrid model levels you may wish to use
the setzaxis command to generate a zaxis description which conforms to the ECHAM convention. See
section "1.4 Z-axis description" for an example how to define a hybrid Z-axis.

200

Reference manual

Interpolation

Example

To remap between different hybrid model level data use:

cdo remapeta,vct infile outfile

Here is an example vct file with 19 hybrid model level:

0 O UL W~ O

=
N~ OO

13
14
15
16
17
18
19

0.
2000.
4000.
6046.
8267.

10609.
12851.
14698.
15861.
16116.
15356.
13621.
11101.
8127.
5125.
2549.
783.

0.

0.

0.

00000000000000000
00000000000000000
00000000000000000
10937500000000000
92968750000000000
51171875000000000
10156250000000000
50000000000000000
12890625000000000
23828125000000000
92187500000000000
46093750000000000
55859375000000000
14453125000000000
14062500000000000
96899414062500000
19506835937500000
00000000000000000
00000000000000000
00000000000000000

=)

H O OOOODODODODODODODODOOOO OO

.00000000000000000
.00000000000000000
.00000000000000000
.00033899326808751
.00335718691349030
.01307003945112228
.03407714888453484
.07064980268478394
.12591671943664551
.20119541883468628
.29551959037780762
.40540921688079834
.52493220567703247
.64610791206359863
.75969839096069336
.85643762350082397
.92874687910079956
.97298520803451538
.99228149652481079
.00000000000000000

201

Interpolation Reference manual

2.12.9. VERTINTML - Vertical interpolation
Synopsis

ml2pl plevels infile outfile
ml2hl hlevels infile outfile

Description

Interpolates 3D variables on hybrid sigma pressure level to pressure or height levels. A basic linear
method is used for interpolation. To calculate the pressure on model levels, the a and b coefficients
defining the model levels and the surface pressure are required. The a and b coefficients are normally
part of the model level data. If not available, the surface pressure can be derived from the logarithm
of the surface pressure. To extrapolate the temperature, the surface geopotential is also needed. The
geopotential height must be present at the hybrid layer interfaces (model half-layers)! All needed
variables are identified by their GRIB1 code number or NetCDF CF standard name. Supported
parameter tables are: WMO standard table number 2 and ECMWF local table number 128.

Name Units | GRIB1 code | CF standard name
log surface pressure | Pa 152

surface pressure Pa 134 surface air pressure
air temperature K 130 air__temperature
surface geopotential | m2 s-2 | 129 surface__geopotential
geopotential height | m 156 geopotential height

Use the alias m12plx/ml2hlx to fill in missing values with the next available value of the same vertical
column. Only the temperature is extrapolated in this case. The extrapolation method originates from
the ECHAM postprocessing. This operator requires all variables on the same horizontal grid. Missing
values in the input data are not supported.

Operators

ml2pl Model to pressure level interpolation
Interpolates 3D variables on hybrid sigma pressure level to pressure level.

ml2hl Model to height level interpolation
Interpolates 3D variables on hybrid sigma pressure level to height level. The procedure is
the same as for the operator ml2pl except for the pressure levels being calculated from the
heights by: plevel = 101325 x exp(hlevel/ — 7000)

Parameter
plevels FLOAT Pressure levels in pascal
hlevels FLOAT Height levels in meter
Note

This is a specific implementation for data from the ECHAM model, it may not work with data from
other sources. The components of the hybrid coordinate must always be avaiable at the hybrid layer
interfaces even if the data is defined at the hybrid layer midpoints.

Example
To interpolate hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa use:

cdo ml2pl,92500,85000,50000,20000 infile outfile

202

Reference manual Interpolation

2.12.10. VERTINTAP - Vertical pressure interpolation
Synopsis

ap2pl,levels infile outfile

Description

Interpolate 3D variables on hybrid sigma height coordinates to pressure levels. A basic linear method
is used for interpolation. The input file must contain the 3D air pressure in pascal. The air pressure
is identified by the NetCDF CF standard name air_pressure. Use the alias ap2plx to fill in missing
values with the next available value of the same vertical column. This operator requires all variables
on the same horizontal grid. Missing values in the input data are not supported.

Parameter

levels FLOAT Comma-separated list of pressure levels in pascal

Note

This is a specific implementation for NetCDF files from the ICON model, it may not work with data
from other sources.

Example

To interpolate 3D variables on hybrid sigma height level to pressure levels of 925, 850, 500 and 200
hPa use:

cdo ap2pl,92500,85000,50000,20000 infile outfile

203

Interpolation Reference manual

2.12.11. VERTINTGH - Vertical height interpolation
Synopsis

gh2hl levels infile outfile

Description

Interpolate 3D variables on hybrid sigma height coordinates to height levels. A basic linear method is
used for interpolation. The input file must contain the 3D geometric height in meter. The geometric
height is identified by the NetCDF CF standard name geometric_height_at_full_level_center.
Use the alias gh2hlx to fill in missing values with the next available value of the same vertical column.
This operator requires all variables on the same horizontal grid. Missing values in the input data are
not supported.

Parameter

levels FLOAT Comma-separated list of height levels in meter

Note

This is a specific implementation for NetCDF files from the ICON model, it may not work with data
from other sources.

Example

To interpolate 3D variables on hybrid sigma height level to height levels of 20, 100, 500, 1000, 5000,
10000 and 20000 meter use:

cdo gh2hl,20,100,500,1000,5000,10000,20000 infile outfile

204

Reference manual Interpolation

2.12.12. INTLEVEL - Linear level interpolation
Synopsis
intlevel,parameter infile outfile

Description

This operator performs a linear vertical interpolation of 3D variables. The 1D target levels can be
specified with the level parameter or read in via a Z-axis description file.

Parameter
level FLOAT Comma-separated list of target levels
zdescription STRING Path to a file containing a description of the Z-axis
zvarname STRING Use zvarname as the vertical 3D source coordinate instead of the 1D
coordinate variable
extrapolate BOOL Fill target layers out of the source layer range with the nearest source
layer
Example

To interpolate 3D variables on height levels to a new set of height levels use:

cdo intlevel,level=10,50,100,500,1000 infile outfile

2.12.13. INTLEVEL3D - Linear level interpolation from/to 3D vertical coordinates
Synopsis
<operator > tgtcoordinate infilel infile2 outfile

Description

This operator performs a linear vertical interpolation of 3D variables fields with given 3D vertical
coordinates. infilel contains the 3D data variables and infile2 the 3D vertical source coordinate.
The parameter tgtcoordinate is a datafile with the 3D vertical target coordinate.

Operators

intlevel3d Linear level interpolation onto a 3D vertical coordinate

intlevelx3d like intlevel3d but with extrapolation

Parameter

tgtcoordinate STRING filename for 3D vertical target coordinates

205

Interpolation Reference manual

Example
To interpolate 3D variables from one set of 3D height levels into another one where
e infile2 contains a single 3D variable, which represents the source 3D vertical coordinate
e infilel contains the source data, which the vertical coordinate from infile2 belongs to

e tgtcoordinate only contains the target 3D height levels

cdo intlevel3d,tgtcoordinate infilel infile2 outfile

206

Reference manual Interpolation

2.12.14. INTTIME - Time interpolation
Synopsis

inttime,date,time[,inc] infile outfile

intntime,n infile outfile

Description

This module performs linear interpolation between timesteps. Interpolation is only performed if both
values exist. If both values are missing values, the result is also a missing value. If only one value
exists, it is taken if the time weighting is greater than or equal to 0.5. So no new value will be created
at existing time steps, if the value is missing there.

Operators
inttime Interpolation between timesteps
This operator creates a new dataset by linear interpolation between timesteps. The
user has to define the start date/time with an optional increment.
intntime Interpolation between timesteps
This operator performs linear interpolation between timesteps. The user has to define
the number of timesteps from one timestep to the next.
Parameter
date STRING Start date (format YYYY-MM-DD)
time STRING Start time (format hh:mm:ss)
inc STRING Optional increment (seconds, minutes, hours, days, months, years) [default:
Ohour]
n INTEGER Number of timesteps from one timestep to the next
Example

Assumed a 6 hourly dataset starts at 1987-01-01 12:00:00. To interpolate this time series to a one
hourly dataset use:

cdo inttime,1987-01-01,12:00:00,1hour infile outfile

207

Interpolation Reference manual

2.12.15. INTYEAR - Year interpolation
Synopsis

intyear,years infilel infile2 obase

Description

This operator performs linear interpolation between two years, timestep by timestep. The input
files need to have the same structure with the same variables. The output files will be named
<obase><yyyy><suffix> where yyyy will be the year and suffix is the filename extension derived
from the file format.

Parameter
years INTEGER Comma-separated list or first/last[/inc] range of years
Environment

CDO_FILE_SUFFIX Set the default file suffix. This suffix will be added to the output file names
instead of the filename extension derived from the file format. Set this variable
to NULL to disable the adding of a file suffix.

Note

This operator needs to open all output files simultaneously. The maximum number of open files
depends on the operating system!

Example

Assume there are two monthly mean datasets over a year. The first dataset has 12 timesteps for the
year 1985 and the second one for the year 1990. To interpolate the years between 1985 and 1990
month by month use:

cdo intyear,1986,1987,1988,1989 infilel infile2 year

Example result of ’dir year*’ for NetCDF datasets:

yearl986 .nc yearl987.nc yearl988.nc yearl989.nc

208

Reference manual Transformation

2.13. Transformation

This section contains modules to perform spectral transformations.

Here is a short overview of all operators in this section:

sp2gp Spectral to gridpoint

gp2sp Gridpoint to spectral

sp2sp Spectral to spectral

dv2ps D and V to velocity potential and stream function
dv2uv Divergence and vorticity to U and V wind

uv2dyv U and V wind to divergence and vorticity

fourier Fourier transformation

209

Transformation Reference manual

2.13.1. SPECTRAL - Spectral transformation
Synopsis

<operator>[typeftrunc] infile outfile

Description

This module transforms fields on a global regular Gaussian grid to spectral coefficients and vice
versa. The transformation is achieved by applying Fast Fourier Transformation (FFT) first and
direct Legendre Transformation afterwards in gp2sp. In sp2gp the inverse Legendre Transformation
and inverse FFT are used. Missing values are not supported.

The relationship between the spectral resolution, governed by the truncation number T, and the grid
resolution depends on the number of grid points at which the shortest wavelength field is represented.
For a grid with 2N points between the poles (so 4N grid points in total around the globe) the
relationship is:

linear grid: the shortest wavelength is represented by 2 grid points — 4N ~ 2(TL + 1)
quadratic grid: the shortest wavelength is represented by 3 grid points — 4N ~ 3(TQ + 1)
cubic grid: the shortest wavelength is represented by 4 grid points — 4N ~ 4(TC + 1)

The quadratic grid is used by ECHAM and ERA15. ERA40 is using a linear Gaussian grid reflected
by the TL notation.

The following table shows the calculation of the number of latitudes and the triangular truncation
for the different grid types:

Gridtype | Number of latitudes: nlat | Triangular truncation: ntr
linear NINT((ntr*2 4+ 1)/2) (nlat*2 - 1) / 2
quadratic | NINT((ntr*3 + 1)/2) (nlat*2-1) / 3
cubic NINT((ntr*4 + 1)/2) (nlat*2-1) / 4
Operators

sp2gp Spectral to gridpoint
Convert all spectral fields to a global regular Gaussian grid. The optional parameter trunc
must be greater than the input truncation.

gp2sp Gridpoint to spectral
Convert all Gaussian gridpoint fields to spectral fields. The optional parameter trunc
must be lower than the input truncation.

Parameter
type STRING Type of the grid: quadratic, linear, cubic (default: type=quadratic)
trunc STRING Triangular truncation

Note

To speed up the calculations, the Legendre polynoms are kept in memory. This requires a relatively
large amount of memory. This is for example 12GB for T1279 data.

210

Reference manual Transformation

Example

To transform spectral coefficients from T106 to F80 regular Gaussian grid use:

cdo sp2gp infile outfile

To transform spectral coefficients from TL159 to F80 regular Gaussian grid use:

cdo sp2gp,type=linear infile outfile

211

Transformation Reference manual

2.13.2. SPECCONYV - Spectral conversion
Synopsis
sp2sp,trunc infile outfile

Description

Changed the triangular truncation of all spectral fields. This operator performs downward conversion
by cutting the resolution. Upward conversions are achieved by filling in zeros.

Parameter

trunc INTEGER New spectral resolution
2.13.3. WIND2 - D and V to velocity potential and stream function
Synopsis

dv2ps infile outfile

Description

Calculate spherical harmonic coefficients of velocity potential and stream function from spherical
harmonic coefficients of relative divergence and vorticity. The divergence and vorticity need to have
the names sd and svo or code numbers 155 and 138.

212

Reference manual Transformation

2.13.4. WIND - Wind transformation
Synopsis

<operator >[,gridtype] infile outfile

Description

This module converts relative divergence and vorticity to U and V wind and vice versa. Divergence
and vorticity are spherical harmonic coefficients in spectral space and U and V are on a global regular
Gaussian grid. The Gaussian latitudes need to be ordered from north to south. Missing values are
not supported.

The relationship between the spectral resolution, governed by the truncation number T, and the grid
resolution depends on the number of grid points at which the shortest wavelength field is represented.
For a grid with 2N points between the poles (so 4N grid points in total around the globe) the
relationship is:

linear grid: the shortest wavelength is represented by 2 grid points — 4N ~ 2(TL + 1)
quadratic grid: the shortest wavelength is represented by 3 grid points — 4N ~ 3(TQ + 1)
cubic grid: the shortest wavelength is represented by 4 grid points — 4N ~ 4(TC + 1)

The quadratic grid is used by ECHAM and ERA15. ERA40 is using a linear Gaussian grid reflected
by the TL notation.

The following table shows the calculation of the number of latitudes and the triangular truncation
for the different grid types:

Gridtype | Number of latitudes: nlat | Triangular truncation: ntr
linear NINT((ntr*2 + 1)/2) (nlat*2 - 1) / 2
quadratic | NINT((ntr*3 + 1)/2) (nlat*2-1) / 3
cubic NINT((ntr*4 + 1)/2) (nlat*2 - 1) / 4
Operators
dv2uv Divergence and vorticity to U and V wind

Calculate U and V wind on a Gaussian grid from spherical harmonic coefficients of relative
divergence and vorticity. The divergence and vorticity need to have the names sd and svo
or code numbers 155 and 138.

uv2dv U and V wind to divergence and vorticity
Calculate spherical harmonic coefficients of relative divergence and vorticity from U and
V wind. The U and V wind need to be on a Gaussian grid and need to have the names u
and v or the code numbers 131 and 132.

Parameter

gridtype STRING Type of the grid: quadratic, linear, cubic (default: quadratic)

Note

To speed up the calculations, the Legendre polynoms are kept in memory. This requires a relatively
large amount of memory. This is for example 12GB for T1279 data.

213

Transformation Reference manual

Example

Assume a dataset has at least spherical harmonic coefficients of divergence and vorticity. To transform
the spectral divergence and vorticity to U and V wind on a Gaussian grid use:

cdo dv2uv infile outfile

214

Reference manual Transformation

2.13.5. FOURIER - Fourier transformation
Synopsis

fourier,epsilon infile outfile

Description

The fourier operator performs the fourier transformation or the inverse fourier transformation of
all input fields. If the number of timesteps is a power of 2 then the algorithm of the Fast Fourier
Transformation (FFT) is used.

It is

|
—

1 n
Vn 4

J
where a user given epsilon = —1 leads to the forward transformation and a user given epsilon = 1
leads to the backward transformation.

o(t,z) = i(t, x)edﬂj

Il
=]

If the input stream infile consists only of complex fields, then the fields of outfile, computed by

cdo -f ext fourier,1 —-fourier,-1 infile outfile

are the same than that of infile. For real input files see function retocomplex.

Parameter

epsilon INTEGER -1: forward transformation; 1: backward transformation

Note
Complex numbers can only be stored in NetCDF4 and EXTRA format.

215

Import/Export

Reference manual

2.14. Import/Export

This section contains modules to import and export data files which can not read or write directly with
CDO.

Here is a short overview of all operators in this section:

import__binary
import__cmsaf

import__amsr

input
inputsrv
inputext

output
outputf
outputint
outputsrv
outputext

outputtab

gmtxyz
gmtcells

Import binary data sets
Import CM-SAF HDF5 files
Import AMSR binary files

ASCII input
SERVICE ASCII input
EXTRA ASCII input

ASCII output
Formatted output
Integer output
SERVICE ASCII output
EXTRA ASCII output

Table output

GMT xyz format
GMT multiple segment format

216

Reference manual Import/Export

2.14.1. IMPORTBINARY - Import binary data sets
Synopsis

import__binary infile outfile

Description

This operator imports gridded binary data sets via a GrADS data descriptor file. The GrADS data
descriptor file contains a complete description of the binary data as well as instructions on where to
find the data and how to read it. The descriptor file is an ASCII file that can be created easily with
a text editor. The general contents of a gridded data descriptor file are as follows:

o Filename for the binary data

e Missing or undefined data value

e Mapping between grid coordinates and world coordinates
¢ Description of variables in the binary data set

A detailed description of the components of a GrADS data descriptor file can be found in [GrADS].
Here is a list of the supported components: BYTESWAPPED, CHSUB, DSET, ENDVARS, FILE-
HEADER, HEADERBYTES, OPTIONS, TDEF, TITLE, TRAILERBYTES, UNDEF, VARS, XDEF,
XYHEADER, YDEF, ZDEF

Note
Only 32-bit IEEE floats are supported for standard binary files!

Example

To convert a binary data file to NetCDF use:

cdo -f nc import_binary infile.ctl outfile.nc

Here is an example of a GrADS data descriptor file:

DSET “infile.bin

OPTIONS sequential

UNDEF —9e+33

XDEF 360 LINEAR —179.5 1

YDEF 180 LINEAR —89.5 1

ZDEF 1 LINEAR 1 1

TDEF 1 LINEAR 00:00Z15jun1989 12hr

VARS 1
param 1 99 description of the variable
ENDVARS

The binary data file infile.bin contains one parameter on a global 1 degree lon/lat grid written with
FORTRAN record length headers (sequential).

217

Import/Export Reference manual

2.14.2. IMPORTCMSAF - Import CM-SAF HDFb5 files

Synopsis

import__cmsaf infile outfile

Description

This operator imports gridded CM-SAF (Satellite Application Facility on Climate Monitoring) HDF5
files. CM-SAF exploits data from polar-orbiting and geostationary satellites in order to provide
climate monitoring products of the following parameters:

Cloud parameters: cloud fraction (CFC), cloud type (CTY), cloud phase (CPH), cloud top height,
pressure and temperature (CTH,CTP,CTT), cloud optical thickness (COT), cloud water
path (CWP).

Surface radiation components: Surface albedo (SAL); surface incoming (SIS) and net (SNS) shortwave
radiation; surface downward (SDL) and outgoing (SOL) longwave radiation, surface net
longwave radiation (SNL) and surface radiation budget (SRB).

Top-of-atmosphere radiation components: Incoming (TIS) and reflected (TRS) solar radiative flux
at top-of-atmosphere. Emitted thermal radiative flux at top-of-atmosphere (TET).

Water vapour: Vertically integrated water vapour (HTW), layered vertically integrated water vapour
and layer mean temperature and relative humidity for 5 layers (HLW), temperature and
mixing ratio at 6 pressure levels.

Daily and monthly mean products can be ordered via the CM-SAF web page (www.cmsaf.eu). Prod-
ucts with higher spatial and temporal resolution, i.e. instantaneous swath-based products, are avail-
able on request (contact.cmsaf@dwd.de). All products are distributed free-of-charge. More informa-
tion on the data is available on the CM-SAF homepage (www.cmsaf.eu).

Daily and monthly mean products are provided in equal-area projections. CDO reads the projection
parameters from the metadata in the HDF5-headers in order to allow spatial operations like remap-
ping. For spatial operations with instantaneous products on original satellite projection, additional
files with arrays of latitudes and longitudes are needed. These can be obtained from CM-SAF together
with the data.

Note

To use this operator, it is necessary to build CDO with HDF5 support (version 1.6 or higher). The
PROJ library (version 5.0 or higher) is needed for full support of the remapping functionality.

Example

A typical sequence of commands with this operator could look like this:

cdo -f nc remapbil,r360x180 -import_cmsaf cmsaf_product.hdf output.nc

(bilinear remapping to a predefined global grid with 1 deg resolution and conversion to NetCDF).

If you work with CM-SAF data on original satellite project, an additional file with information on
geolocation is required, to perform such spatial operations:

cdo -f nc remapbil,r720x360 -setgrid,cmsaf_latlon.hb -import_cmsaf cmsaf.hdf out.nc

Some CM-SAF data are stored as scaled integer values. For some operations, it could be desirable
(or necessary) to increase the accuracy of the converted products:

218

Reference manual Import/Export

cdo -b £32 -f nc fldmean -sellonlatbox,0,10,0,10 -remapbil,r720x360 \
—import_cmsaf cmsaf_product.hdf output.nc

2.14.3. IMPORTAMSR - Import AMSR binary files
Synopsis

import__amsr infile outfile

Description

This operator imports gridded binary AMSR, (Advanced Microwave Scanning Radiometer) data. The
binary data files are available from the AMSR ftp site (ftp://ftp.ssmi.com/amsre). Each file consists
of twelve (daily) or five (averaged) 0.25 x 0.25 degree grid (1440,720) byte maps. For daily files,
six daytime maps in the following order, Time (UTC), Sea Surface Temperature (SST), 10 meter
Surface Wind Speed (WSPD), Atmospheric Water Vapor (VAPOR), Cloud Liquid Water (CLOUD),
and Rain Rate (RAIN), are followed by six nighttime maps in the same order. Time-Averaged files
contain just the geophysical layers in the same order [SST, WSPD, VAPOR, CLOUD, RAIN]. More
information to the data is available on the AMSR homepage http://www.remss.com/amsr.

Example

To convert monthly binary AMSR files to NetCDF use:

cdo -f nc amsre_yyyymmvd amsre_yyyymmvb.nc

219

Import/Export Reference manual

2.14.4. INPUT - Formatted input
Synopsis

input,grid[,zaxis] outfile
inputsrv outfile

inputext outfile

Description

This module reads time series of one 2D variable from standard input. All input fields need to have
the same horizontal grid. The format of the input depends on the chosen operator.

Operators

input ASCII input
Reads fields with ASCII numbers from standard input and stores them in outfile.
The numbers read are exactly that ones which are written out by the output operator.

inputsrv SERVICE ASCII input
Reads fields with ASCIT numbers from standard input and stores them in outfile.
Each field should have a header of 8 integers (SERVICE likely). The numbers that are
read are exactly that ones which are written out by the outputsrv operator.

inputext EXTRA ASCII input
Read fields with ASCII numbers from standard input and stores them in outfile.
Each field should have header of 4 integers (EXTRA likely). The numbers read are
exactly that ones which are written out by the outputext operator.

Parameter
grid STRING Grid description file or name
zaxis STRING Z-axis description file
Example

Assume an ASCII dataset contains a field on a global regular grid with 32 longitudes and 16 latitudes
(512 elements). To create a GRIB1 dataset from the ASCII dataset use:

cdo -f grb input,r32x16 outfile.grb < my_ascii_data

220

Reference manual

Import/Export

2.14.5. OUTPUT - Formatted output

Synopsis

output infiles

outputf,format[nelem] infiles

outputint infiles

outputsrv infiles

outputext infiles

Description

This module prints all values of all input datasets to standard output. All input fields need to have
the same horizontal grid. All input files need to have the same structure with the same variables.
The format of the output depends on the chosen operator.

Operators
output ASCII output
Prints all values to standard output. Each row has 6 elements with the C-style format
"%13.6g".
outputf Formatted output
Prints all values to standard output. The format and number of elements for each row
have to be specified by the parameters format and nelem. The default for nelem is 1.
outputint Integer output
Prints all values rounded to the nearest integer to standard output.
outputsrv SERVICE ASCII output
Prints all values to standard output. Each field with a header of 8 integers (SERVICE
likely).
outputext EXTRA ASCII output
Prints all values to standard output. Each field with a header of 4 integers (EXTRA
likely).
Parameter
format STRING C-style format for one element (e.g. %13.6g)
nelem INTEGER Number of elements for each row (default: nelem = 1)
Example

To print all field elements of a dataset formatted with "%8.4¢" and 8 values per line use:

cdo outputf,%8.4g,8 infile

Example result of a dataset with one field on 64 grid points:

261.7
250.
273.
267.
275.
282.
292.
293.

0V O© W WU =

262 257.8 252.5 248.8 247.7 246.3 246.1
252.6 253.9 254.8 252 246.6 249.7 257.9
266.2 259.8 261.6 257.2 253.4 251 263.7
267.4 272.2 266.7 259.6 255.2 272.9 277.1
275.5 276.4 278.4 282 269.6 278.7 279.5
284.5 280.3 280.3 280 281.5 284.7 283.6
290.5 293.9 292.6 292.7 292.8 294.1 293.6
292.6 291.2 292.6 293.2 292.8 291 291.2

221

Import/Export

Reference manual

2.14.6. OUTPUTTAB - Table output

Synopsis

outputtab,parameter infiles outfile

Description

This operator prints a table of all input datasets to standard output. infiles is an arbitrary number
of input files. All input files need to have the same structure with the same variables on different
timesteps. All input fields need to have the same horizontal grid.

The contents of the table depends on the chosen parameters. The format of each table parameter is
keyname[:len]. len is the optional length of a table entry. The number of significant digits of floating
point parameters can be set with the CDO option --precision, the default is 7. Here is a list of all
valid keynames:

Keyname | Type Description

value FLOAT Value of the variable [len:§]

name STRING Name of the variable [len:8]

param STRING Parameter ID (GRIB1: code[.tabnum]; GRIB2: num|.cat[.dis]]) [len:11]

code INTEGER | Code number [len:4]

X FLOAT X coordinate of the original grid [len:6]

y FLOAT Y coordinate of the original grid [len:6]

lon FLOAT Longitude coordinate in degrees [len:6]

lat FLOAT Latitude coordinate in degrees [len:6]

lev FLOAT Vertical level [len:6]

xind INTEGER | Grid x index [len:4]

yind INTEGER | Grid y index [len:4]

timestep INTEGER | Timestep number [len:6]

date STRING Date (format YYYY-MM-DD) [len:10]

time STRING Time (format hh:mm:ss) [len:8]

year INTEGER | Year [len:5]

month INTEGER | Month [len:2]

day INTEGER | Day [len:2]

nohead INTEGER | Disable output of header line
Parameter

parameter STRING Comma-separated list of keynames, one for each column of the table

Example

To print a table with name, date, lon, lat and value information use:

cdo outputtab,name,date,lon,lat,value infile

Here is an example output of a time series with the yearly mean temperatur at lon=10/lat=>53.5:

name
tsurf
tsurf
tsurf
tsurf
tsurf

date
1991—-12-31
1992—12—-31
1993—12—31
1994—12—-31
1995—12—31

lon lat value
10 53.5 8.83903
10 53.5 8.17439
10 53.5 7.90489
10 53.5 10.0216
10 53.5 9.07798

222

Reference manual Import/Export

2.14.7. OUTPUTGMT - GMT output
Synopsis

<operator> infile

Description

This module prints the first field of the input dataset to standard output. The output can be used to
generate 2D Lon/Lat plots with [GMT]. The format of the output depends on the chosen operator.

Operators

gmtxyz GMT xyz format
The operator exports the first field to the GMT xyz ASCII format. The output can be
used to create contour plots with the GMT module pscontour.

gmtcells GMT multiple segment format
The operator exports the first field to the GMT multiple segment ASCII format. The
output can be used to create shaded gridfill plots with the GMT module psxy.

Example

1) GMT shaded contour plot of a global temperature field with a resolution of 4 degree. The contour
interval is 3 with a rainbow color table.

cdo gmtxyz temp > data.gmt

makecpt -T213/318/3 -Crainbow > gmt.cpt

pscontour -K -JQO0/10i -Rd -I -Cgmt.cpt data.gmt > gmtplot.ps
pscoast -0 -J -R -Dc -W -B40g20 >> gmtplot.ps

-160° -120° -80° —-40° 0’ 40° 80° 120° 160°
80°
71N <
S S
40°
N
\\'\i - |
0’ ; ﬁ%
¥ . . V&'y 3
V : /_' |
-40° | T 4
N .l" N ; N
N . e - ~
-80° o
-160° -120° -80° -40° 0° 40° 80° 120° 160°

2) GMT shaded gridfill plot of a global temperature field with a resolution of 4 degree. The contour
interval is 3 with a rainbow color table.

223

80°

40°

Import/Export Reference manual

cdo gmtcells temp > data.gmt

makecpt -T213/318/3 -Crainbow > gmt.cpt

psxy -K -JQO0/10i -Rd -L -Cgmt.cpt -m data.gmt > gmtplot.ps
pscoast -0 -J -R -Dc -W -B40g20 >> gmtplot.ps

-160° -120° -80° -40° 0 40° 80" 120° 160°

-80° -40° 0° 40° 80° 120° 160°

224

Reference manual

Miscellaneous

2.15. Miscellaneous

This section contains miscellaneous modules which do not fit to the other sections before.

Here is a short overview of all operators in this section:

gradsdes GrADS data descriptor file

after ECHAM standard post processor
bandpass Bandpass filtering

lowpass Lowpass filtering

highpass Highpass filtering

gridarea Grid cell area

gridweights Grid cell weights

smooth Smooth grid points

smooth9 9 point smoothing

setvals Set list of old values to new values
setrtoc Set range to constant

setrtoc2 Set range to constant others to constant2
gridcellindex Get grid cell index from lon/lat point
const Create a constant field

random Create a field with random numbers
topo Create a field with topography

seq Create a time series

stdatm Create values for pressure and temperature for hydrostatic atmosphere
timsort Sort over the time

uvDestag Destaggering of u/v wind components
rotuvNorth Rotate u/v wind to North pole.
projuvLatLon Cylindrical Equidistant projection
rotuvb Backward rotation

mrotuvb Backward rotation of MPIOM data
mastrfu Mass stream function

pressure__half
pressure

delta_ pressure

sealevelpressure

gheight
gheight__half
air__density

adisit

adipot

Pressure on half-levels
Pressure on full-levels
Pressure difference of half-levels

Sea level pressure

Geopotential height on full-levels
Geopotential height on half-levels
Air density

Potential temperature to in-situ temperature
In-situ temperature to potential temperature

225

Miscellaneous Reference manual
rhopot Calculates potential density
histcount Histogram count
histsum Histogram sum
histmean Histogram mean
histfreq Histogram frequency
sethalo Set the bounds of a field
wct Windchill temperature
fdns Frost days where no snow index per time period
strwin Strong wind days index per time period
strbre Strong breeze days index per time period
strgal Strong gale days index per time period
hurr Hurricane days index per time period
cmorlite CMOR lite
verifygrid Verify grid coordinates
hpdegrade Degrade healpix
hpupgrade Upgrade healpix

226

Reference manual Miscellaneous

2.15.1. GRADSDES - GrADS data descriptor file
Synopsis

gradsdes[,mapversion] infile

Description

Creates a [GrADS] data descriptor file. Supported file formats are GRIB1, NetCDF, SERVICE,
EXTRA and IEG. For GRIBI files the GrADS map file is also generated. For SERVICE and EXTRA
files the grid have to be specified with the CDO option ’-g <grid>’. This module takes infile in

order to create filenames for the descriptor (infile.ctl) and the map (infile.gmp) file.

Parameter

mapversion INTEGER Format version of the GrADS map file for GRIB1 datasets. Use 1 for

a machine specific version 1 GrADS map file, 2 for a machine independent version 2
GrADS map file and 4 to support GRIB files >2GB. A version 2 map file can be used
only with GrADS version 1.8 or newer. A version 4 map file can be used only with

GrADS version 2.0 or newer. The default is 4 for files >2GB, otherwise 2.

Example

To create a GrADS data descriptor file from a GRIB1 dataset use:

cdo gradsdes infile.grb

This will create a descriptor file with the name infile.ctl and the map file infile.gmp.

Assumed the input GRIB1 dataset has 3 variables over 12 timesteps on a regular Gaussian F16 grid.

The contents of the resulting GrADS data description file is approximately:

DSET “infile.grb

DTYPE GRIB

INDEX “infile .gmp

XDEF 64 LINEAR 0.000000 5.625000

YDEF 32 LEVELS —85.761 —80.269 —74.745 —69.213 —63.679 —58.143
—52.607 —47.070 —41.532 —35.995 —30.458 —24.920
—19.382 —13.844 —8.307 —2.769 2.769 8.307
13.844 19.382 24.920 30.458 35.995 41.532
47.070 52.607 58.143 63.679 69.213 74.745
80.269 85.761

ZDEF 4 LEVELS 925 850 500 200

TDEF 12 LINEAR 12:00Z1jan1987 1mo

TITLE infile.grb T21 grid

OPTIONS yrev

UNDEF —9e+33

VARS 3

geosp 0 129,1,0 surface geopotential (orography) [m 2/s72]
t 4 130,99,0 temperature [K]

tslm1 0 139,1,0 surface temperature of land [K]

ENDVARS

227

Miscellaneous Reference manual

2.15.2. AFTERBURNER - ECHAM standard post processor

Synopsis

after[,vct] infiles outfile

Description

The "afterburner" is the standard post processor for [ECHAM| GRIB and NetCDF data which provides
the following operations:

o Extract specified variables and levels

e Compute derived variables

e Transform spectral data to Gaussian grid representation
e Vertical interpolation to pressure levels

e Compute temporal means

This operator reads selection parameters as namelist from stdin. Use the UNIX redirection "<namelistfile
to read the namelist from file.

The input files can’t be combined with other CDQO operators because of an optimized reader for this
operator.

Namelist

Namelist parameter and there defaults:

TYPE=0, CODE=—1, LEVEL=—1, INTERVAL=0, MEAN=0, EXTRAPOLATE=1

TYPE controls the transformation and vertical interpolation. Transforming spectral data to Gaussian
grid representation and vertical interpolation to pressure levels are performed in a chain of steps. The
TYPE parameter may be used to stop the chain at a certain step. Valid values are:

TYPE 0 : Hybrid level spectral coefficients
TYPE = 10 : Hybrid level fourier coefficients
TYPE = 11 : Hybrid level zonal mean sections
TYPE = 20 : Hybrid level gauss grids

TYPE = 30 : Pressure level gauss grids

TYPE = 40 : Pressure level fourier coefficients
TYPE = 41 : Pressure level zonal mean sections
TYPE = 50 : Pressure level spectral coefficients
TYPE = 60 : Pressure level fourier coefficients
TYPE = 61 : Pressure level zonal mean sections

TYPE = 70 : Pressure level gauss grids

Vorticity, divergence, streamfunction and velocity potential need special treatment in the vertical
transformation. They are not available as types 30, 40 and 41. If you select one of these combinations,
type is automatically switched to the equivalent types 70, 60 and 61. The type of all other variables
will be switched too, because the type is a global parameter.

CODE selects the variables by the ECHAM GRIB1 code number (1-255). The default value -1 processes
all detected codes. Derived variables computed by the afterburner:

228

Reference manual Miscellaneous

Code | Name Longname Units | Level Needed Codes
34 low__cld low cloud single 223 on modellevel
35 mid_ cld mid cloud single 223 on modellevel
36 hih_cld high cloud single 223 on modellevel
131 u u-velocity m/s atm (ml+pl) | 138, 155

132 v v-velocity m/s atm (ml+pl) | 138, 155

135 omega vertical velocity Pa/s atm (ml+4pl) | 138, 152, 155

148 stream streamfunction m” 2/s | atm (ml+pl) | 131, 132

149 velopot velocity potential m” 2/s | atm (ml4+pl) | 131, 132

151 slp mean sea level pressure Pa surface 129, 130, 152

156 geopoth geopotential height m atm (ml+4pl) | 129, 130, 133, 152
157 rhumidity | relative humidity atm (ml+4pl) | 130, 133, 152

189 sclfs surface solar cloud forcing surface 176-185

190 telfs surface thermal cloud forcing surface 177-186

191 sclf0 top solar cloud forcing surface 178-187

192 tclfo top thermal cloud forcing surface 179-188

259 windspeed | windspeed m/s atm (ml4pl) | sqrt(u*u+v*v)
260 precip total precipitation surface 142+143

LEVEL selects the hybrid or pressure levels. The allowed values depends on the parameter TYPE. The
default value -1 processes all detected levels.

INTERVAL selects the processing interval. The default value 0 process data on monthly intervals.
INTERVAL=1 sets the interval to daily.

MEAN=1 compute and write monthly or daily mean fields. The default value 0 writes out all timesteps.

EXTRAPOLATE=0 switch of the extrapolation of missing values during the interpolation from model to
pressure level (only available with MEAN=0 and TYPE=30). The default value 1 extrapolate missing
values.

Possible combinations of TYPE, CODE and MEAN:

TYPE | CODE MEAN
0/10/11 | 130 temperature 0
0/10/11 | 131 u-velocity 0
0/10/11 | 132 v-velocity 0
0/10/11 | 133 specific humidity | 0
0/10/11 | 138 vorticity 0
0/10/11 | 148 streamfunction 0
0/10/11 | 149 velocity potential | 0
0/10/11 | 152 LnPs 0
0/10/11 | 155 divergence 0
>11 all codes 0/1
Parameter
vet STRING File with VCT in ASCII format
Example

To interpolate ECHAM hybrid model level data to pressure levels of 925, 850, 500 and 200 hPa, use:

cdo after infile outfile << EON
TYPE=30 LEVEL=92500,85000,50000,20000
EON

229

Miscellaneous Reference manual

2.15.3. FILTER - Time series filtering
Synopsis

bandpass,fmin,fmax infile outfile
lowpass,fmax infile outfile

highpass,fiin infile outfile

Description

This module takes the time series for each gridpoint in infile and (fast fourier) transforms it into the
frequency domain. According to the particular operator and its parameters certain frequencies are
filtered (set to zero) in the frequency domain and the spectrum is (inverse fast fourier) transformed
back into the time domain. To determine the frequency the time-axis of infile is used. (Data should
have a constant time increment since this assumption applies for transformation. However, the time
increment has to be different from zero.) All frequencies given as parameter are interpreted per year.
This is done by the assumption of a 365-day calendar. Consequently if you want to perform multiyear-
filtering accurately you have to delete the 29th of February. If your infile has a 360 year calendar
the frequency parameters fmin respectively fiax should be multiplied with a factor of 360/365 in
order to obtain accurate results. For the set up of a frequency filter the frequency parameters have to
be adjusted to a frequency in the data. Here fmin is rounded down and fmax is always rounded up.
Consequently it is possible to use bandpass with fmin=fmax without getting a zero-field for outfile.
Hints for efficient usage:

* to get reliable results the time-series has to be detrended (cdo detrend)
o the lowest frequency greater zero that can be contained in infile is 1/(N*dT),
o the greatest frequency is 1/(2dT) (Nyquist frequency),

with N the number of timesteps and dT the time increment of infile in years.

Missing value support for operators in this module is not implemented, yet!

Operators

bandpass Bandpass filtering
Bandpass filtering (pass for frequencies between fmin and fimax). Suppresses all vari-
ability outside the frequency range specified by [fmin,fmax].

lowpass Lowpass filtering
Lowpass filtering (pass for frequencies lower than fmax). Suppresses all variability
with frequencies greater than fmax.

highpass Highpass filtering
Highpass filtering (pass for frequencies greater than fmin). Suppresses all variabilty
with frequencies lower than fmin.

Parameter
fmin FLOAT Minimum frequency per year that passes the filter.
fmax FLOAT Maximum frequency per year that passes the filter.
Note

For better performace of these operators use the CDQO configure option --with-fftw3.

230

Reference manual Miscellaneous

Example

Now assume your data are still hourly for a time period of 5 years but with a 365/366-day- calendar
and you want to suppress the variability on timescales greater or equal to one year (we suggest here
to use a number x bigger than one (e.g. x=1.5) since there will be dominant frequencies around the
peak (if there is one) as well due to the issue that the time series is not of infinite length). Therefor
you can use the following:

cdo highpass,x -del29feb infile outfile

Accordingly you might use the following to suppress variability on timescales shorter than one year:

cdo lowpass,l -del29feb infile outfile

Finally you might be interested in 2-year variability. If you want to suppress the seasonal cycle as
well as say the longer cycles in climate system you might use

cdo bandpass,x,y —-del29feb infile outfile

with x<=0.5 and y >=0.5.

2.15.4. GRIDCELL - Grid cell quantities
Synopsis

gridarea[radius] infile outfile

gridweights infile outfile

Description

This module reads the grid cell area of the first grid from the input stream. If the grid cell area
is missing it will be computed from the grid coordinates. The area of a grid cell is calculated using
spherical triangles from the coordinates of the center and the vertices. The base is a unit sphere which
is scaled with the radius of the planet. The default planet radius is 6371000 meter. The parameter
radius or the environment variable PLANET _RADIUS can be used to change the default. Depending on
the chosen operator the grid cell area or weights are written to the output stream.

Operators

gridarea Grid cell area
Writes the grid cell area to the output stream. If the grid cell area have to be
computed it is scaled with the planet radius to square meters.

gridweights Grid cell weights
Writes the grid cell area weights to the output stream.

Parameter

radius FLOAT Planet radius in meter

Environment

PLANET_RADIUS This variable is used to scale the computed grid cell areas to square meters. By
default PLANET RADIUS is set to an earth radius of 6371000 meter.

231

Miscellaneous

Reference manual

2.15.5. SMOOTH - Smooth grid points

Synopsis

smooth/options] infile outfile

smooth9 infile outfile

Description

Smooth all grid points of a horizontal grid. Options is a comma-separated list of "key=value" pairs
with optional parameters.

Operators

smooth

smooth9

Parameter
nsmooth
radius
maxpoints
weighted
weight0
weightR

Smooth grid points

Performs a N point smoothing on all input fields. The number of points used depend
on the search radius (radius) and the maximum number of points (maxpoints). Per
default all points within the search radius of ldegree are used. The weights for the
points depend on the weighting method and the distance. The implemented weighting
method is linear with constant default weights of 0.25 at distance 0 (weight0) and at
the search radius (weightR).

9 point smoothing

Performs a 9 point smoothing on all fields with a quadrilateral curvilinear grid. The
result at each grid point is a weighted average of the grid point plus the 8 surrounding
points. The center point receives a weight of 1.0, the points at each side and above and
below receive a weight of 0.5, and corner points receive a weight of 0.3. All 9 points are
multiplied by their weights and summed, then divided by the total weight to obtain the
smoothed value. Any missing data points are not included in the sum; points beyond
the grid boundary are considered to be missing. Thus the final result may be the result
of an averaging with less than 9 points.

INTEGER Number of times to smooth, default nsmooth=1
STRING Search radius, default radius=1deg (units: deg, rad, km, m)

INTEGER Maximum number of points, default maxpoints=<gridsize>

STRING Weighting method, default weighted=linear
FLOAT Weight at distance 0, default weight0=0.25
FLOAT Weight at the search radius, default weightR=0.25

2.15.6. DELTAT - Difference between timesteps

Synopsis

deltat infile outfile

Description

This operator computes the difference between each timestep.

232

Reference manual Miscellaneous

2.15.7. REPLACEVALUES - Replace variable values
Synopsis

setvals,oldval,newvalf,...] infile outfile
setrtoc,rmin,rmax,c infile outfile

setrtoc2,rmin,rmax,c,c2 infile outfile

Description

This module replaces old variable values with new values, depending on the operator.

Operators
setvals Set list of old values to new values
Supply a list of n pairs of old and new values.
setrtoc Set range to constant
oft,) = c if i(t,z) > rmin A i(t, z) < rmax
U i(t2) if i(t,2) < rmin Vi(t, x) > rmax
setrtoc2 Set range to constant others to constant2
oft, z) = ¢ if i(t,z) > rmin A i(t,) < rmax
’ c2 if i(t,x) < rminVi(t,z) > rmax
Parameter
oldval,newval,... FLOAT Pairs of old and new values
rmin FLOAT Lower bound
rmax FLOAT Upper bound
c FLOAT New value - inside range
c2 FLOAT New value - outside range

2.15.8. GETGRIDCELL - Get grid cell index
Synopsis
gridcellindex/,parameter] infile

Description

Get the grid cell index of one grid point selected by the parameter lon and lat.

Parameter
lon INTEGER Longitude of the grid cell in degree
lat INTEGER Latitude of the grid cell in degree

233

Miscellaneous

Reference manual

2.15.9. VARGEN - Generate a field

Synopsis

const,const,grid outfile

random,grid[,seed] outfile

topo/,grid] outfile

seq,start,end[,inc] outfile

stdatm,levels outfile

Description

Generates a dataset with one or more fields

Operators

const
random
topo

seq

stdatm

Create a constant field
Creates a constant field. All field elements of the grid have the same value.

Create a field with random numbers
Creates a field with rectangularly distrubuted random numbers in the interval [0,1].

Create a field with topography
Creates a field with topography data, per default on a global half degree grid.

Create a time series
Creates a time series with field size 1 and field elements beginning with a start value in
time step 1 which is increased from one time step to the next.

Create values for pressure and temperature for hydrostatic atmosphere
Creates pressure and temperature values for the given list of vertical levels. The formulas
are:

xp(&)To+AT
P(2) = Pyexp (—f;g log (()10))

T(z) = To + AT exp (—%)

with the following constants

Ty = 213K : offset to get a surface temperature of 288K
AT = 75K : Temperature lapse rate for 10Km
Py = 1013.25hPa : surface pressure
H = 10000.0m :scale height
g= 9.80665%2 : earth gravity

R = 287.05kgiK : gas constant for air

This is the solution for the hydrostatic equations and is only valid for the troposphere
(constant positive lapse rate). The temperature increase in the stratosphere and other
effects of the upper atmosphere are not taken into account.

234

Reference manual

Miscellaneous

Parameter

const FLOAT
seed INTEGER
grid STRING
start FLOAT
end FLOAT
inc FLOAT
levels FLOAT

Example

Constant

The seed for a new sequence of pseudo-random numbers [default: 1]
Target grid description file or name

Start value of the loop

End value of the loop

Increment of the loop [default: 1]

Target levels in metre above surface

To create a standard atmosphere dataset on a given horizontal grid:

cdo enlarge,gridfile -stdatm,10000,8000,5000,3000,2000,1000,500,200,0 outfile

2.15.10. TIMSORT - Timsort

Synopsis

timsort infile outfile

Description

Sorts the elements in ascending order over all timesteps for every field position. After sorting it is:

o(t1,z) <= o(ta, x)

Example

V(tl < tg),:L‘

To sort all field elements of a dataset over all timesteps use:

cdo timsort infile outfile

235

Miscellaneous Reference manual

2.15.11. WINDTRANS - Wind Transformation
Synopsis

uvDestag,u,v[,-/40.5[,-/+0.5]] infile outfile
rotuvNorth,u,v infile outfile

projuvLatLon,u,v infile outfile

Description

This module contains special operators for datsets with wind components on a rotated lon/lat grid,
e.g. data from the regional model HIRLAM or REMO.

Operators
uvDestag Destaggering of u/v wind components
This is a special operator for destaggering of wind components. If the file contains
a grid with temperature (name="t’ or code=11) then grid_ temp will be used for
destaggered wind.
rotuvNorth Rotate u/v wind to North pole.

This is an operator for transformation of wind-vectors from grid-relative to north-
pole relative for the whole file. (FAST implementation with JACOBIANS)

projuvLatLon Cylindrical Equidistant projection
Thus is an operator for transformation of wind-vectors from the globe-spherical
coordinate system into a flat Cylindrical Equidistant (lat-lon) projection. (FAST
JACOBIAN implementation)

Parameter
u,v STRING Pair of u,v wind components (use variable names or code numbers)
-/40.5,-/40.5 STRING Destaggered grid offsets are optional (default -0.5,-0.5)

Example

Typical operator sequence on HIRLAM NWP model output (LAMH_ D11 files):

cdo uvDestag,33,34 inputfile inputfile_destag
cdo rotuvNorth,33,34 inputfile_destag inputfile_rotuvN

236

Reference manual Miscellaneous

2.15.12. ROTUVB - Rotation
Synopsis
rotuvb,u,v,... infile outfile

Description

This is a special operator for datsets with wind components on a rotated grid, e.g. data from the
regional model REMO. It performs a backward transformation of velocity components U and V from
a rotated spherical system to a geographical system.

Parameter
u,v,... STRING Pairs of zonal and meridional velocity components (use variable names or
code numbers)
Note

This is a specific implementation for data from the REMO model, it may not work with data from
other sources.

Example

To transform the u and v velocity of a dataset from a rotated spherical system to a geographical
system use:

cdo rotuvb,u,v infile outfile

2.15.13. MROTUVB - Backward rotation of MPIOM data
Synopsis

mrotuvb infilel infile2 outfile

Description

MPIOM data are on a rotated Arakawa C grid. The velocity components U and V are located
on the edges of the cells and point in the direction of the grid lines and rows. With mrotuvb the
velocity vector is rotated in latitudinal and longitudinal direction. Before the rotation, U and V
are interpolated to the scalar points (cell center). U is located with the coordinates for U in infilel
and V in infile2. mrotuvb assumes a positive meridional flow for a flow from grid point(i,j) to grid
point(i,j+1) and positive zonal flow for a flow from grid point(i+1,j) to point(i,j).

Note

This is a specific implementation for data from the MPIOM model, it may not work with data from
other sources.

237

Miscellaneous Reference manual

2.15.14. MASTRFU - Mass stream function
Synopsis

mastrfu infile outfile

Description

This is a special operator for the post processing of the atmospheric general circulation model
[ECHAM]. It computes the mass stream function (code=272). The input dataset have to be a
zonal mean of v-velocity [m/s] (code=132) on pressure levels.

Example

To compute the mass stream function from a zonal mean v-velocity dataset use:

cdo mastrfu infile outfile

238

Reference manual

Miscellaneous

2.15.15. PRESSURE

Synopsis

- Pressure on model levels

<operator> infile outfile

Description

This module contains operators to calculate the pressure on model levels. To calculate the pressure on
model levels, the a and b coefficients defining the model levels and the surface pressure are required.
The a and b coefficients are normally part of the model level data. If not available, the surface
pressure can be derived from the logarithm of the surface pressure. The surface pressure is identified
by the GRIB1 code number or NetCDF CF standard name.

Name Units | GRIB1 code | CF standard name
log surface pressure | Pa 152
surface pressure Pa 134 surface_air pressure

Operators

pressure__half

pressure

delta_ pressure

Pressure on half-levels
This operator computes the pressure on model half-levels in pascal. The model
half-level pressure (p_half) is given by:

p_half =a+bxsp

with
a, b: coefficients defining the model levels
sp: surface pressure

Pressure on full-levels

This operator computes the pressure on model full-levels in pascal. The pressure
on model full-levels (p_ full) is in the middle of the layers defined by the model
half-levels:

p_half_above + p_half_below
2

Pressure difference of half-levels
This operator computes the pressure difference between to model half-levels.

p_ full =

delta_p =p_half_below — p_half__above

239

Miscellaneous Reference manual

2.15.16. DERIVEPAR - Derived model parameters
Synopsis

<operator> infile outfile

Description

This module contains operators that calculate derived model parameters. All necessary input variables
are identified by their GRIB1 code number or the NetCDF CF standard name. Supported GRIB1
parameter tables are: WMO standard table number 2 and ECMWF local table number 128.

CF standard name | Units | GRIB 1 code

surface air pressure | Pa 134
air__temperature K 130
specific__humidity keg/kg | 133
surface__geopotential m2 s-2 | 129
geopotential height m 156
Operators
sealevelpressure Sea level pressure

This operator computes the sea level pressure (air_ pressure_at_sea_level).
Required input fields are surface air pressure, surface_geopotential and air temperature
on full hybrid sigma pressure levels.

gheight Geopotential height on full-levels
This operator computes the geopotential height (geopotential height) on model
full-levels in metres. Required input fields are surface air pressure, sur-
face_geopotential, specific__humidity and air_ temperature on full hybrid sigma
pressure levels. Note, this procedure is an approximation, which doesn’t take
into account the effects of e.g. cloud ice and water, rain and snow.

gheight_ half Geopotential height on half-levels
This operator computes the geopotential height (geopotential height) on model
half-levels in metres. Required input fields are surface air pressure, sur-
face__geopotential, specific__humidity and air_temperature on full hybrid sigma
pressure levels. Note, this procedure is an approximation, which doesn’t take
into account the effects of e.g. cloud ice and water, rain and snow.

air__density Air density
This operator computes the air density, it depends on pressure, humidity and
temperature. Required input fields are surface_ air_ pressure, specific_ humidity
and air__temperature on full hybrid sigma pressure levels. The air density (rho)
is calculated with the following formula:

rho = P/Rs*Tv

P: air pressure in Pascal
Tv: virtual temperature in Kelvin
Rs: specific gas constant for try air; 287.085 J/(kg*K)

Tv=Tx[14ax*q]

T: air temperature in Kelvin
q: specific humidity
a: gas constants of air and water vapor; 0.6078

240

Reference manual Miscellaneous

2.15.17. ADISIT - Potential temperature to in-situ temperature and vice versa
Synopsis

<operator >[,pressure] infile outfile

Description
Operators

adisit Potential temperature to in-situ temperature
This is a special operator for the post processing of the ocean and sea ice model [MPIOM].
It converts potential temperature adiabatically to in-situ temperature to(t, s, p). Required
input fields are sea water potential temperature (name=tho; code=2) and sea water salinity
(name=sao; code=5). Pressure is calculated from the level information or can be specified
by the optional parameter. Output fields are sea water temperature (name=to; code=20)
and sea water salinity (name=s; code=5).

adipot In-situ temperature to potential temperature
This is a special operator for the post processing of the ocean and sea ice model [MPIOM].
It converts in-situ temperature to potential temperature tho(to, s, p). Required input fields
are sea water in-situ temperature (name=t; code=2) and sea water salinity (name=sao,s;
code=5). Pressure is calculated from the level information or can be specified by the
optional parameter. Output fields are sea water temperature (name=tho; code=2) and
sea water salinity (name=s; code=5).

Parameter

pressure FLOAT Pressure in bar (constant value assigned to all levels)

2.15.18. RHOPOT - Calculates potential density
Synopsis

rhopot/,pressure] infile outfile

Description

This is a special operator for the post processing of the ocean and sea ice model [MPIOM]. It calculates
the sea water potential density (name=rhopoto; code=18). Required input fields are sea water in-situ
temperature (name=to; code=20) and sea water salinity (name=sao; code=5). Pressure is calculated
from the level information or can be specified by the optional parameter.

Parameter

pressure FLOAT Pressure in bar (constant value assigned to all levels)

Example

To compute the sea water potential density from the potential temperature use this operator in
combination with adisit:

cdo rhopot -adisit infile outfile

241

Miscellaneous Reference manual

2.15.19. HISTOGRAM - Histogram
Synopsis

<operator >,bounds infile outfile

Description

This module creates bins for a histogram of the input data. The bins have to be adjacent and have
non-overlapping intervals. The user has to define the bounds of the bins. The first value is the lower
bound and the second value the upper bound of the first bin. The bounds of the second bin are
defined by the second and third value, aso. Only 2-dimensional input fields are allowed. The output
file contains one vertical level for each of the bins requested.

Operators
histcount Histogram count
Number of elements in the bin range.
histsum Histogram sum
Sum of elements in the bin range.
histmean Histogram mean
Mean of elements in the bin range.
histfreq Histogram frequency
Relative frequency of elements in the bin range.
Parameter
bounds FLOAT Comma-separated list of the bin bounds (-inf and inf valid)

2.15.20. SETHALO - Set the bounds of a field
Synopsis

sethalo[,parameter] infile outfile

Description

This operator sets the boundary in the east, west, south and north of the rectangular understood
fields. Positive values of the parameters increase the boundary in the selected direction. Negative
values decrease the field at the selected boundary. The new rows and columns are filled with the
missing value. With the optional parameter value a different fill value can be used. Global cyclic
fields are filled cyclically at the east and west borders, if the fill value is not set by the user. All input
fields need to have the same horizontal grid.

Parameter
east INTEGER East halo
west INTEGER West halo

south INTEGER South halo
north INTEGER North halo
value FLOAT Fill value (default is the missing value)

242

Reference manual Miscellaneous

2.15.21. WCT - Windchill temperature
Synopsis

wct infilel infile2 outfile

Description

Let infilel and infile2 be time series of temperature and wind speed fields, then a corresponding
time series of resulting windchill temperatures is written to outfile. The wind chill temperature cal-
culation is only valid for a temperature of T <= 33 °C and a wind speed of v >= 1.39 m/s. Whenever
these conditions are not satisfied, a missing value is written to outfile. Note that temperature and
wind speed fields have to be given in units of °C and m/s, respectively.

2.15.22. FDNS - Frost days where no snow index per time period
Synopsis

fdns infilel infile2 outfile

Description

Let infilel be a time series of the daily minimum temperature TN and infile2 be a corresponding
series of daily surface snow amounts. Then the number of days where TN < 0 °C and the surface snow
amount is less than 1 cm is counted. The temperature TN have to be given in units of Kelvin. The
date information of a timestep in outfile is the date of the last contributing timestep in infile.

2.15.23. STRWIN - Strong wind days index per time period
Synopsis

strwin/,v] infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of
days where VX > v is counted. The horizontal wind speed v is an optional parameter with default v
= 10.5 m/s. A further output variable is the maximum number of consecutive days with maximum
wind speed greater than or equal to v. Note that both VX and v have to be given in units of m/s.
Also note that the horizontal wind speed is defined as the square root of the sum of squares of the
zonal and meridional wind speeds. The date information of a timestep in outfile is the date of the
last contributing timestep in infile.

Parameter
v FLOAT Horizontal wind speed threshold (m/s, default v = 10.5 m/s)

243

Miscellaneous Reference manual

2.15.24. STRBRE - Strong breeze days index per time period
Synopsis

strbre infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of
days where VX is greater than or equal to 10.5 m/s is counted. A further output variable is the
maximum number of consecutive days with maximum wind speed greater than or equal to 10.5 m/s.
Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind
speeds and have to be given in units of m/s. The date information of a timestep in outfile is the
date of the last contributing timestep in infile.

2.15.25. STRGAL - Strong gale days index per time period
Synopsis

strgal infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of
days where VX is greater than or equal to 20.5 m/s is counted. A further output variable is the
maximum number of consecutive days with maximum wind speed greater than or equal to 20.5 m/s.
Note that VX is defined as the square root of the sum of square of the zonal and meridional wind
speeds and have to be given in units of m/s. The date information of a timestep in outfile is the
date of the last contributing timestep in infile.

2.15.26. HURR - Hurricane days index per time period
Synopsis

hurr infile outfile

Description

Let infile be a time series of the daily maximum horizontal wind speed VX, then the number of
days where VX is greater than or equal to 32.5 m/s is counted. A further output variable is the
maximum number of consecutive days with maximum wind speed greater than or equal to 32.5 m/s.
Note that VX is defined as the square root of the sum of squares of the zonal and meridional wind
speeds and have to be given in units of m/s. The date information of a timestep in outfile is the
date of the last contributing timestep in infile.

244

Reference manual Miscellaneous

2.15.27. CMORLITE - CMOR lite
Synopsis

cmorlite,table[,convert] infile outfile

Description

The [CMOR] (Climate Model Output Rewriter) library comprises a set of functions, that can be
used to produce CF-compliant NetCDF files that fulfill the requirements of many of the climate
community’s standard model experiments. These experiments are collectively referred to as MIP’s.
Much of the metadata written to the output files is defined in MIP-specific tables, typically made
available from each MIP’s web site.

The CDO operator cmorlite process the header and variable section of such MIP tables and writes
the result with the internal IO library [CDI]. In addition to the CMOR 2 and 3 table format, the
CDO parameter table format is also supported. The following parameter table entries are available:

Entry Type Description

name WORD Name of the variable

out_name WORD New name of the variable

type WORD Data type (real or double)

standard_name WORD As defined in the CF standard name table

long_name STRING Describing the variable

units STRING Specifying the units for the variable

comment STRING Information concerning the variable

cell_methods STRING Information concerning calculation of means or climatologies
cell_measures STRING Indicates the names of the variables containing cell areas and volumes
missing_value FLOAT Specifying how missing data will be identified

valid_min FLOAT Minimum valid value

valid_max FLOAT Maximum valid value

ok_min_mean_abs | FLOAT Minimum absolute mean

ok_max_mean_abs | FLOAT Maximum absolute mean

factor FLOAT Scale factor

delete INTEGER. | Set to 1 to delete variable

convert INTEGER | Set to 1 to convert the unit if necessary

Most of the above entries are stored as variables attributes, some of them are handled differently. The
variable name is used as a search key for the parameter table. valid_min, valid_max, ok_min_mean_abs
and ok_max_mean_abs are used to check the range of the data.

Parameter
table STRING Name of the CMOR table as specified from PCMDI
convert STRING Converts the units if necessary

Example

Here is an example of a parameter table for one variable:

prompt> cat mypartab
¶meter
name =

245

Miscellaneous Reference manual

out_name = ta
standard_name = air_temperature
units = "K"
missing value = 1.0e+20
valid_min = 157.1
valid max = 336.3

/

To apply this parameter table to a dataset use:

cdo —-f nc cmorlite,mypartab,convert infile outfile

This command renames the variable t to ta. The standard name of this variable is set to air_temperature
and the unit is set to [K] (converts the unit if necessary). The missing value will be set to 1.0e+20.

In addition it will be checked whether the values of the variable are in the range of 157.1 to 336.3.
The result will be stored in NetCDF.

2.15.28. VERIFYGRID - Verify grid coordinates

Synopsis

verifygrid infile

Description

This operator verifies the coordinates of all horizontal grids found in infile. Among other things,
it searches for duplicate cells, non-convex cells, and whether the center is located outside the cell
bounds. Use the CDO option -v to output the position of these cells. This information can be useful
to avoid problems when interpolating the data.

246

Reference manual Miscellaneous

2.15.29. HEALPIX - Change healpix resolution
Synopsis

<operator >,parameter infile outfile

Description

Degrade or upgrade the resolution of a healpix grid.

Operators

hpdegrade Degrade healpix
Degrade the resolution of a healpix grid. The value of the target pixel is the mean
of the source pixels.

hpupgrade Upgrade healpix
Upgrade the resolution of a healpix grid. The values of the target pixels are the value
of the source pixel.

Parameter

nside INTEGER The nside of the target healpix, must be a power of two [default: same as

input].
order STRING Pixel ordering of the target healpix ('nested’ or ’ring’).
power FLOAT If non-zero, divide the result by (nside[in] /nside[out])**power. power=-2 keeps

the sum of the map invariant.

247

3. Contributors

3.1. History

CDO was originally developed by Uwe Schulzweida at the Max Planck Institute for Meteorology (MPI-M).
The first public release is available since 2003. The MPI-M, together with the DKRZ, has a long history
in the development of tools for processing climate data. CDO was inspired by some of these tools, such as
the PINGO package and the GRIB-Modules.

PINGO! was developed by Jiirgen Waszkewitz, Peter Lenzen, and Nathan Gillet in 1995 at the DKRZ,
Hamburg (Germany). CDO has a similar user interface and uses some of the PINGO routines.

The GRIB-Modules was developed by Heiko Borgert and Wolfgang Welke in 1991 at the MPI-M. CDO is
using a similar module structure and also some of the routines.

3.2. External sources

CDO has incorporated code from several sources:

afterburner is a postprocessing application for ECHAM data and ECMWF analysis data, originally de-
veloped by Edilbert Kirk, Michael Ponater and Arno Hellbach. The afterburner code was modified
for the CDO operators after, ml12pl, ml2hl, sp2gp, gp2sp.

SCRIP is a software package used to generate interpolation weights for remapping fields from one grid to
another in spherical geometry [SCRIP]. It was developed at the Los Alamos National Laboratory by
Philip W. Jones. The SCRIP library was converted from Fortran to ANSI C and is used as the base
for the remapping operators in CDO.

YAC (Yet Another Coupler) was jointly developed by DKRZ and MPI-M by Moritz Hanke and Rene
Redler [YAC]. CDO is using the clipping and cell search routines for the conservative remapping
with remapcon.

libkdtree a C99 implementation of the kd-tree algorithm developed by Joérg Dietrich.

CDO uses tools from the GNU project, including automake, and libtool.

3.3. Contributors

The primary contributors to the CDO development have been:

Uwe Schulweida : Concept, design and implementation of CDO, project coordination, and releases.

Luis Kornblueh : He supports CDO from the beginning. His main contributions are GRIB performance
and compression, GME and unstructured grid support. Luis also helps with design and planning.

Ralf Miiller : He is working on CDO since 2009. His main contributions are the implementation of the
User Portal, the ruby and python interface for all CDO operators, the building process and the
Windows support. The CDO User Portal was funded by the European Commission infracstructure
project IS-ENES. Ralf also helps a lot with the user support. Implemented operators: intlevel3d,
consecsum, consects, ngrids, ngridpoints, reducegrid

1Procedural INterface for GRIB formatted Objects

248

Contributors Contributors

Oliver Heidmann : He is working on CDO since 2015. His main contributions are refactoring to C++ and
the new command line parser.

Karin Meier-Fleischer : She is working in the CDO user support since 2017.

Fabian Wachsmann : He is working on CDO for the CMIP6 project since 2016. His main task is the
implementation and support of the cmor operator. He has also implemented the ETCCDI Indices of
Daily Temperature and Precipitation Extremes.

Cedrick Ansorge : He worked on the software package CDO as a student assistant at MPI-M from 2007-
2011. Implemented operators: eof, eof3d, enscrps, ensbrs, maskregion, bandpass, lowpass, highpass,
smooth9

Ralf Quast : He worked on CDO on behalf of the Service Gruppe Anpassung (SGA), DKRZ in 2006.
He implemented all ECA Indices of Daily Temperature and Precipitation Extremes, all percentile
operators, module YDRUNSTAT and wct.

Kameswarrao Modali : He worked on CDO from 2012-2013.
Implemented operators: contour, shaded, grfill, vector, graph.

Michal Koutek : Implemented operators: selmulti delmulti, changemulti, samplegrid, uvDestag, rotu-
vNorth, projuvLatLon.

Etienne Tourigny : Implemented operators: setclonlatbox, setcindexbox, setvals, splitsel, histfreq, setrtoc,
setrtoc2.

Karl-Hermann Wieners : Implemented operators: aexpr, aexprf, selzaxisname.

Asela Rajapakse : He worked on CDO from 2016-2017 as part of the EUDAT project.
Implemented operator: verifygrid

Estanislao Gavilan : Improved the CDO documentation for the installation section.

Many users have contributed to CDO by sending bug reports, patches and suggestions over time. Very
helpful is also the active participation in the user forum of some users. Here is an incomplete list:

Jaison-Thomas Ambadan, Harald Anlauf, Andy Aschwanden, Stefan Bauer, Simon Blessing,
Renate Brokopf, Michael Boettinger, Tim Briicher, Reinhard Budich, Martin Claus,

Traute Criger, Brendan de Tracey, Irene Fischer-Bruns, Chris Fletscher, Helmut Frank,
Kristina Frohlich, Oliver Fuhrer, Monika Esch, Pier Giuseppe Fogli, Beate Gayer,
Veronika Gayler, Marco Giorgetta, David Gobbett, Holger Goettel, Helmut Haak,

Stefan Hagemann, Angelika Heil, Barbara Hennemuth, Daniel Hernandez, Nathanael Huebbe,
Thomas Jahns, Frank Kaspar, Daniel Klocke, Edi Kirk, Yvonne Kistermann,

Stefanie Legutke, Leonidas Linardakis, Stephan Lorenz, Frank Lunkeit, Uwe Mikolajewicz,
Laura Niederdrenk, Dirk Notz, Hans-Jirgen Panitz, Ronny Petrik, Swantje Preuschmann,
Florian Prill, Asela Rajapakse, Daniel Reinert, Hannes Reuter, Mathis Rosenhauer,
Reiner Schnur, Martin Schultz, Dennis Shea, Kevin Sieck, Martin Stendel,

Bjorn Stevens, Martina Stockhaus, Claas Teichmann, Adrian Tompkins, Jorg Trentmann,
Alvaro M. Valdebenito, Geert Jan van Oldenborgh, Jin-Song von Storch, David Wang,
Joerg Wegner, Heiner Widmann, Claudia Wunram, Klaus Wyser

Please let me know if your name was omitted!

249

Bibliography

[BitInformation.jl]
M Kléwer, M Razinger, JJ Dominguez, PD Diiben and TN Palmer, 2021. Compressing atmospheric
data into its real information content. Nature Computational Science 1, 713-724. 10.1038/s43588-021-
00156-2

[CDI]
Climate Data Interface, from the Max Planck Institute for Meteorologie
[CM-SAF)

Satellite Application Facility on Climate Monitoring, from the German Weather Service (Deutscher
Wetterdienst, DWD)

[CMOR]
Climate Model Output Rewriter, from the Program For Climate Model Diagnosis and Intercomparison
(PCMDI)

[ecCodes]
APT for GRIB decoding/encoding, from the European Centre for Medium-Range Weather Forecasts
(ECMWF)

[ECHAM]

The atmospheric general circulation model ECHAMS, from the Max Planck Institute for Meteorologie
[GMT]

The Generic Mapping Tool, from the School of Ocean and Earth Science and Technology (SOEST)
[GrADS]

Grid Analysis and Display System, from the Center for Ocean-Land-Atmosphere Studies (COLA)
[GRIB]

GRIB version 1, from the World Meteorological Organisation (WMO)
[HDF5)

HDF version 5, from the HDF Group
[INTERA]

INTERA Software Package, from the Max Planck Institute for Meteorologie
[Magics]

Magics Software Package, from the European Centre for Medium-Range Weather Forecasts (ECMWEF)
[MPIOM]

Ocean and sea ice model, from the Max Planck Institute for Meteorologie
[NetCDF]

NetCDF Software Package, from the UNIDATA Program Center of the University Corporation for
Atmospheric Research

[PINGO]
The PINGO package, from the Model & Data group at the Max Planck Institute for Meteorologie

[REMO)]
Regional Model, from the Max Planck Institute for Meteorologie

[Preisendorfer]
Rudolph W. Preisendorfer: Principal Component Analysis in Meteorology and Oceanography, Elsevier
(1988)

250

https://www.nature.com/articles/s43588-021-00156-2
https://www.nature.com/articles/s43588-021-00156-2
https://code.mpimet.mpg.de/projects/cdi
https://www.mpimet.mpg.de
https://www.cmsaf.eu
https://www.dwd.de
https://www.dwd.de
https://github.com/PCMDI/cmor.git
https://www-pcmdi.llnl.gov
https://www-pcmdi.llnl.gov
https://confluence.ecmwf.int/display/ECC/ecCodes+Home
https://www.ecmwf.int
https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf
https://www.mpimet.mpg.de
https://gmt.soest.hawaii.edu/gmt4
https://www.soest.hawaii.edu
http://cola.gmu.edu/grads
http://cola.gmu.edu
http://www.wmo.ch/web/www/WMOCodes/Guides/GRIB/GRIB1-Contents.html
https://www.wmo.ch
https://www.hdfgroup.org/HDF5
http://wekuw.met.fu-berlin.de/~IngoKirchner/nudging/nudging
https://www.mpimet.mpg.de
https://confluence.ecmwf.int/display/MAGP/Magics
https://www.ecmwf.int
https://www.mpimet.mpg.de/en/wissenschaft/modelle/mpiom/mpiom-description.html
https://www.mpimet.mpg.de
https://www.unidata.ucar.edu/software/netcdf
https://www.unidata.ucar.edu
http://www.remo-rcm.de
https://www.mpimet.mpg.de

Bibliography Bibliography

[PROJ]
Cartographic Projections Library, originally written by Gerald Evenden then of the USGS.

[SCRIP]
SCRIP Software Package, from the Los Alamos National Laboratory

[szip]
Szip compression software, developed at University of New Mexico.

[vonStorch]
Hans von Storch, Walter Zwiers: Statistical Analysis in Climate Research, Cambridge University Press
(1999)

[YAC]
YAC - Yet Another Coupler Software Package, from DKRZ and MPI for Meteorologie

251

https://proj.org
https://github.com/SCRIP-Project/SCRIP
https://www.hdfgroup.org/doc_resource/SZIP
https://doc.redmine.dkrz.de/YAC/html

A. Environment Variables

The following table describes the environment variables that affect CDO.

Variable name

Default

Description

CDO_DOWNLOAD_ PATH

None

Path where CDO can store downloads.

CDO_FILE SUFFIX None | Default filename suffix. This suffix will be added to the output file
name instead of the filename extension derived from the file
format. NULL will disable the adding of a file suffix.

CDO__GRIDSEARCH__RADIUS 180 | Grid search radius in degree. Used by the operators
setmisstonn, remapdis and remapnn.

CDO_HISTORY INFO true | ’false’ don’t write information to the global history attribute.

CDO_ICON_GRIDS None | Root directory of the installed ICON grids (e.g. /pool/data/ICON).

CDO_PCTL__NBINS 101 | Number of histogram bins.

CDO_RESET_ HISTORY false | ’'true’ resets the global history attribute.

CDO_REMAP_ NORM fracarea | Choose the normalization for the conservative interpolation

CDO__TIMESTAT_ DATE None | Set target timestamp of a temporal statistic operator to the "first",
"middle", "midhigh" or "last" contributing source timestep.

CDO_USE_FFTW 1 | Set to 0 to switch off usage of FFTW. Used in the Filter module.

CDO__VERSION_ INFO true | ’false’ disables the global NetCDF attribute CDO.

252

B. Parallelized operators

Some of the CDO operators are parallelized with OpenMP. To use CDO with multiple OpenMP threads,
you have to set the number of threads with the option ’-P’. Here is an example to distribute the bilinear
interpolation on 8 OpenMP threads:

cdo -P 8 remapbil,targetgrid infile outfile

The following CDO operators are parallelized with OpenMP:

Module Operator Description

Afterburner | after ECHAM standard post processor

Detrend detrend Detrend

EcaEtccdi etcedi_ tx90p % of days when daily max temperature is > the 90th percentile
EcaEtccdi eteedi_ tx10p % of days when daily max temperature is < the 10th percentile
EcaEtccdi etcedi_ tn90p % of days when daily min temperature is > the 90th percentile
EcaEtccdi etcedi_tnl0p % of days when daily min temperature is < the 10th percentile
EcaEtccdi etcedi_r95p Annual tot precip when daily precip exceeds the 95th percentile of ...
EcaEtccdi eteedi_r99p Annual tot precip when daily precip exceeds the 99th percentile of ...
Ensstat ens<STAT> Statistical values over an ensemble

EOF eof Empirical Orthogonal Functions

Fillmiss setmisstonn Set missing value to nearest neighbor

Fillmiss setmisstodis Set missing value to distance-weighted average

Filter bandpass Bandpass filtering

Filter lowpass Lowpass filtering

Filter highpass Highpass filtering

Fourier fourier Fourier transformation

Genweights | genbil Generate bilinear interpolation weights

Genweights | genbic Generate bicubic interpolation weights

Genweights | gendis Generate distance-weighted average remap weights

Genweights | gennn Generate nearest neighbor remap weights

Genweights | gencon Generate 1st order conservative remap weights

Genweights | gencon2 Generate 2nd order conservative remap weights

Genweights | genlaf Generate largest area fraction remap weights

Gridboxstat | gridbox<STAT> | Statistical values over grid boxes

Intlevel intlevel Linear level interpolation

Intlevel3d intlevel3d Linear level interpolation from/to 3D vertical coordinates
Remapeta remapeta Remap vertical hybrid level

Remap remapbil Bilinear interpolation

Remap remapbic Bicubic interpolation

Remap remapdis Distance-weighted average remapping

Remap remapnn Nearest neighbor remapping

Remap remapcon First order conservative remapping

Remap remapcon?2 Second order conservative remapping

Remap remaplaf Largest area fraction remapping

Smooth smooth Smooth grid points

Spectral Sp2¢gp, gp2sp Spectral transformation

253

Parallelized operators

Module | Operator Description

Vertintap | ap2pl, ap2hl | Vertical interpolation on hybrid sigma height coordinates
Vertintgh | gh2hl Vertical height interpolation

Vertintml | ml2pl, ml2hl | Vertical interpolation on hybrid sigma pressure coordinates

254

C. Standard name table

The following CF standard names are supported by CDO.

CF standard name Units | GRIB 1 code | variable name
surface geopotential m2 s-2 129 | geosp
air__temperature K 130 | ta
specific__humidity 1 133 | hus
surface_air_pressure Pa 134 | aps
air__pressure_ at_ sea_ level Pa 151 | psl
geopotential _height m 156 | zg

255

D. Grid description examples

D.1. Example of a curvilinear grid description

Here is an example for the CDO description of a curvilinear grid. xvals/yvals describe the positions of the
6x5 quadrilateral grid cells. The first 4 values of xbounds/ybounds are the corners of the first grid cell.

gridtype = curvilinear
gridsize = 30
xsize =6
ysize =5
xvals = —21 -11 0 11 21 30 —25 —13 0 13
25 36 —31 —16 0 16 31 43 —38 21
0 21 38 52 —51 —30 0 30 51 64
xbounds = —-23 —-14 -—-17 -—28 —14 —5 —6 —17 —5 5 6 —6
5 14 17 6 14 23 28 17 23 32 38 28
—28 —17 —21 —-34 —17 —6 -7 =21 —6 6 7 —7
6 17 21 7 17 28 34 21 28 38 44 34
—-34 -21 =27 —41 —21 -7 -9 27 -7 7 9 —9
7 21 27 9 21 34 41 27 34 44 52 41
—41 —-27 —-35 -—51 —27 -9 —-13 =35 -9 9 13 —13
9 27 35 13 27 41 51 35 41 52 63 51
—51 —-35 —51 —67 —-35 —13 —21 -51 —13 13 21 —21
13 35 51 21 35 51 67 51 51 63 7 67
yvals = 29 32 32 32 29 26 39 42 42 42
39 35 48 51 52 51 48 43 57 61
62 61 57 51 65 70 72 70 65 58
ybounds = 23 26 36 32 26 27 37 36 27 27 37 37
27 26 36 37 26 23 32 36 23 19 28 32
32 36 45 41 36 37 47 45 37 37 47 47
37 36 45 47 36 32 41 45 32 28 36 41
41 45 55 50 45 47 57 55 47 47 57 57
47 45 55 57 45 41 50 55 41 36 44 50
50 55 64 58 55 57 67 64 57 57 67 67
57 55 64 67 55 50 58 64 50 44 51 58
58 64 72 64 64 67 77 72 67 67 7 77
67 64 72 77 64 58 64 72 58 51 56 64

Figure D.1.: Orthographic and Robinson projection of the curvilinear grid, the first grid cell is colored red

256

Grid description examples Example description for an unstructured grid

D.2. Example description for an unstructured grid

Here is an example of the CDO description for an unstructured grid. xvals/yvals describe the positions
of 30 independent hexagonal grid cells. The first 6 values of xbounds/ybounds are the corners of the first
grid cell. The grid cell corners have to rotate counterclockwise. The first grid cell is colored red.

gridtype = unstructured
gridsize = 30
nvertex =6
xvals = —-36 36 0 —18 18 108 72 54 90 180 144 126 162 —108 —144
—162 —126 —72 —90 —54 0 72 36 144 108 —144 180 —72 —108 —36
xbounds = 339 0 0 288 288 309 21 51 72 72 0 0
0 16 21 0 339 344 340 0 —0 344 324 324
20 36 36 16 0 0 93 123 144 144 72 72
72 88 93 72 51 56 52 72 72 56 36 36
92 108 108 88 72 72 165 195 216 216 144 144
144 160 165 144 123 128 124 144 144 128 108 108
164 180 180 160 144 144 237 267 288 288 216 216
216 232 237 216 195 200 196 216 216 200 180 180
236 252 252 232 216 216 288 304 309 288 267 272
268 288 288 272 252 252 308 324 324 304 288 288
345 324 324 36 36 15 36 36 108 108 87 57
20 15 36 57 52 36 108 108 180 180 159 129
92 87 108 129 124 108 180 180 252 252 231 201
164 159 180 201 196 180 252 252 324 324 303 273
236 231 252 273 268 252 308 303 324 345 340 324
yvals = 58 58 32 0 0 58 32 0 0 58 32 0 0 58 32
0 0 32 0 0 —58 —58 —32 —58 —32 —58 —32 —58 —32 —32
ybounds = 41 53 71 71 53 41 41 41 53 71 71 53
11 19 41 53 41 19 —19 —7 11 19 7T —11
—-19 11 7 19 11 -7 41 41 53 71 71 53
11 19 41 53 41 19 —19 —7 11 19 7T —11
—-19 11 7 19 11 —7 41 41 53 71 71 53
11 19 41 53 41 19 —19 —7 11 19 7T —11
—19 11 7 19 11 —7 41 41 53 71 71 53
11 19 41 53 41 19 —19 —7 11 19 7T —11
—19 11 7 19 11 —7 11 19 41 53 41 19
—19 -7 11 19 7T —11 —-19 11 7 19 11 -7
—41 —-53 —71 —-71 —53 —41 —53 —71 —71 =53 —41 —41
—-19 —41 -—-53 —-41 -—-19 -—11 —53 —71 —71 =53 —41 —41
—-19 —41 —-53 —41 -—-19 -11 —53 —71 —71 =53 —41 —41
—-19 —41 -—-53 —-41 -—-19 -—11 —53 —71 —71 =53 —41 —41
—-19 —41 —-53 —-41 -—-19 -—11 —-19 —41 —-53 —-41 -—-19 -—11

Figure D.2.: Orthographic and Robinson projection of the unstructured grid

257

A
ADS L 104
70) 104
add .. 107
adde .o 106
addtrend 183
adipot ... 241
adisit ... 241
ACKDT .« ettt 100
aexprf ... 100
after 228
air_density il 240
ap2pl ..o 203
APPLY 40
AT L 104
atan ... 104
atan2 ... 107
B
bandpass ...l 230
bitrounding i 44
bottomvalue 66
C
Cal 41
changemulti 57
chcode 85
chlevel 85
chlevelc 85
chlevelv 85
chname 85
chparam i 85
chunit 85
cinfo 31
clone ... 41
cmorlite ... 245
codetab 38
collgrido 52
COMSECSUIIL « ettt et e et eeae e e e ieaaee e 124
CONSECES ..t 124
CONSt ot 234
COPY + e ettt et 41
70) T 104
D
dayaddo 108
dayavg ... 149
daydiv ... 108
daymax ... 149
daymeanl 149

daymin ... 149
daymul 108
daypetl ... 150
dayrangeoiiiiiiiiiii 149
daystd ... 149
daystdlo 149
daysub 108
daysum ... 149
dayvar ... 149
dayvarlo 149
delattribute 78
delcode 58
delete ... 55
delgridcell i 64
delmulti 57
delname 58
delparam il 58
delta_ pressurecoeiiiiiiiaann. 239
deltat 232
detrend L. 181
dhouravg 161
dhourmax 161
dhourmean 161
dhourminl 161
dhourrange 161
dhourstd 161
dhourstdl 161
dhoursum 161
dhourvarl 161
dhourvarl 161
diff . 34
diffn ... 34
distgrid ... 51
div 107
dive ..o 106
diveoslat ... 115
divdpm ... 115
divdpy .o 115
dminuteavg ...l 163
dminutemax 163
dminutemean 163
dminutemin 163
dminuterangel 163
dminutestd 163
dminutestdl 163
dminutesum 163
dminutevarcoiiiiii... 163
dminutevarl 163
duplicate ... 45

AV2PS oo 212 B e 72
Av2uv . 213 BEC ettt 73
genbiC ... 191
E genbil ... 189
enlarge ... 93 e 0170 1 H PP 196
EISAVE vttt 126 gendis ... 194
ensbrs ... 129 genlaf 198
EISCIPS + v v vevetetet ettt ea ettt 129 genlevelbounds 87
enskurt ... oo 126 [eE31711 R 193
EISITIAX .« et vveteteteteteee ettt 126 gh2hl ... 204
EISICAIL .\ vteteit et 126 gheight 240
ensmedian ... 126 gheight_half 240
ensSmin ... 126 gmteells ... 223
enspetl ... 126 123001 4 o7/ 223
ENSTANGE ..ttt iit e iie e 126 EP2SD vt 210
ensrkhistspace o 128 gradsdesol 227
ensrkhisttimeo oL 128 gridarea il 231
EIISTOC e 128 gridboXavg ... 137
ensskew ... 126 gridboxkurt L 137
ensstd ... 126 gridboxmax i 137
ensstdl ... 126 gridboxmean, 137
EISSUILL ..ttt ittt it ie et i e 126 gridboxmedian oL 137
EISVAL .ttt 126 gridboxmin 137
ensvarl ...t 126 gridboxrangeo 137
€0f L 185 gridboxskew oo 137
eof3d ... 185 gridboxstd 137
eofcoeff 187 gridboxstdl 137
eofspatial ol 185 gridboxsum ...l 137
eoftimel 185 gridboxvar ... 137
T 72 gridboxvarl oot 137
BOC ettt 73 grideellindex il 233
EXD tt e 104 griddes ... 38
EXPT oot 100 gridweightsol 231
exprf ... 100 e TP 72
L7 73
F g
FADS e 243 H
fidavg ... 131 highpass ... 230
fidecor ... 178 histcount 242
fidcounto 131 histfreq ... 242
fidecovar ... 179 histmeanl 242
fidint ... 131 histsum oo 242
fidkurt ... 131 houravg 147
fldmax ... 131 hourmaxl 147
fldmean ...l 131 hourmeanl 147
fldmedian i 131 hourminl 147
fldmin ... 131 hourpctl ... 148
fidpetl ..o 131 hourrangecooiiiiiiiiiii., 147
fidrangel 131 hourstd 147
fldskew 131 hourstdl ... i 147
fldstd ... 131 hoursum ... 147
fAdstdl ... 131 hourvar i 147
fidsum ... 131 hourvarl i 147
fldvar 131 hpdegrade, 247
fldvarl ... 131 hpupgrade i 247
fourier 215 hurr ... 244
G I

259

Index Index
ifnotthen, 68 MIN L 107
ifnotthenc 69 MINC ... 106
ifthen 68 ml2hl ... 202
ifthenco o i 69 ml2pl .. 202
ifthenelse i 68 monadd 109
import_amsro il 219 MONAVE vttt ettt e e e e ieie e 151
import_binary oL 217 MONAiV ..t 109
import_cmsaf 218 1007070000725 G 151
info 31 §0010) 0008 =T: 1 WA PP 151
infon 31 §0070) 000111 1 HNNURR 151
nput ... 220 monmul ... 109
inputext 220 monpctl ... 152
nputsrv ... 220 MONTANEE .« . v e v teteeeeae e eaieeennns 151
b o 104 monstd ... 151
intlevel 205 monstdl ... 151
intlevel3dl 205 monsub ... 109
intlevelx3d 205 INONSUINL ot vttee et et e iiie e e e iiiaaeeann 151
intntime 207 007071017) SN 151
inttime 207 monvarl 151
intyear ... 208 mrotuvb ... 237
invertlat 88 mul ... 107
invertlev 88 mule ... 106
isosurface 66 mulcoslat 115
muldpm 115
L muldpy ... 115
le 72
leC o 73 N
In o 104 Ndate ... 35
loglO ... 104 T ottt et e 72
lowpass ... 230 1< 73
Lo 72 ngridpoints ... 35
IbC o 73 NErids ... 35
NINE Lo 104
M nlevel 35
MAP «ovvii e 31 £ 010010 0 35
maskindexbox ... 91 160 PP 104
masklonlatbox ... 91 104 07) T 35
maskregion ... 90 ntime 35
mastrfu ... o 238 N SR 35
00 107
00 - 106 O
METAVE . ovvve i 135 output ... 221
IMETZC . .oevet e 46 outputext 221
mergegrid ... 45 outputf ... 221
mergetime ... 46 outputint 221
merkurt ... 135 OULPULSTV .« .ottt 221
MEIMAX ..ottt 135 outputtab 222
§0ATC) 110 0T Y:) o 135
mermedian i 135 P
METrMIN ...t 135 PACK 42
merpetl ... 135 partab ... 38
INEITAIZE v ovoveeee et et eeaeeann, 135 POW ottt 104
merskew ... 135 PLESSUTE vttt et et i aeeeaeenn 239
merstd ... 135 pressure_half oo 239
merstdl ... 135 projuvLatLon 236
IMNETSUNL &« vttt tee e te e e ie e ee e ieeeneans 135
0 07C) 1872 G 135 R
mervarl i 135 Tandoml 234

260

Index Index

TECL © ettt 104 select ... 55
reducegrid i 70 selgrid ... 58
TEETES « v vvttt ettt ettt 181 selgridcell i 64
TEIMIAD e vv vt ettt e et e 199 selhour 60
TEMAPAVE « e e e vttt e enee e e e 138 selindexbox il 62
remapbic ... 191 sellevel ... i o8
remapbil ... 189 sellevidx ... 58
TEMAPCOIL e vt e tttte e eee e e eanns 196 sellonlatbox o it 62
remapdisS ... 194 selltype ..o 58
TEMAPEA . oottt 200 selmonth i 60
remapkurt ... 138 selmulti ... 57
remaplaf ... 198 selname i 58
TEMAPIIAX .+« e vvve et eateeaeae e 138 selparamo i 58
JHS 00E:1/0) 001ST:Y o N 138 selregion i 63
remapmedianol 138 selseason 60
JHS00E:1/0) 00554 NN 138 selsmon ... i 60
F00E:1/0) 010 S 193 selstdname i 58
TEMAPTANEE .t e eeveeeee et eneeaee s 138 seltabnum oL 58
remapskew i 138 seltime ... 60
remapstd ... 138 seltimeidxo 65
remapstdl ... 138 seltimestep ... i 60
TEMAPSUIIL . tet ettt e e e eee e e e 138 selyear i 60
TEIMADPVAT « et tve ettt e e e aeee e 138 selyearidxc. i 64
remapvarl ... 138 SelZAaXIS .. 58
TEPlACE o 45 Selzaxisnameiiiiiiie i 58
rhopot ... 241 1S [P 234
TOtuvb L 237 setattribute il 78
rotuvNorth 236 setcalendarol 83
TUDAVE © e ettt ete et e et eeeeeee e enns 143 setchunkspec i 43
TUNINAX « « v tveeeeeee e 143 setcindexbox ... oo 92
1R 00000 01<Y:)¢ N 143 setclonlatboxo L 92
TUNINEIL © v 143 setcode ... 82
runpcetl ..o 144 setcodetab 82
TUNTANEE ottt vtt et eeeeeee et eneens 143 setctomissol 94
runstd ... 143 setdatel 83
runstdl ... 143 SELAAY .+t 83
TUDNSUIIL &+ ottt eott e et e eee et aieeaeneans 143 setfilter 43
R D004z b 143 setgrid ... 86
runvarl ... 143 setgridarea il 86
setgridcell i 97

S setgridmask oot 86

samplegrid o 64 setgridtypel 86
sealevelpressureo, 240 sethalo 242
SCASAVE « v ettt e e 157 setlevel 82
SCASIIIAX « vt e v ettt e et e 157 setltype ..o 82
SCASINICAIL .. wvevttetteeeeeeeeeeeeeen 157 setmaxsteps ... 82
SCASINIL &+ v vt e et e e 157 SEtMISS .. 107
seaspetl ... 158 SetmisSStoc ... 94
SEASTANZE +vvvve ettt e 157 setmisstodis i 94
seasstd ... 157 setmisstonn it 94
seasstdl ... 157 setmissval 94
TGT V151 D38 0 N 157 SEEMON e 83
SEASVAL « v vt tttttett ettt 157 Setname ... 82
seasvarl ... 157 SEEPATAINL .\ttt e 82
selcircle o 63 setpartabn 80
selcode ... 58 setpartabp o 80
seldate ... i 60 SetProjparamseiiiiiiiiiiii.. 86
selday ... 60 setreftime i 83

Index
Index
...... 107
SEtItOC oo 233 sub .. o
trtoC2 233 SUbC .
. 185 Lo 94 subtrend 183
SEtrtomISS .o vv i e
setstdname 8§ T
settaxis ... 8 .- -
settbounds 23 R o
Settlmiets ... 83 timavg ... 145
Set ‘lf_lt 82 BINCOT .« ottt e e 178
Set unll* 233 timecovar 179
Setva . .é 94 FIMCUMSUI ..ot 124
Setvrang 83 timfillmiss 96
Setyeal'a”””””””” 87 BIMIMAX © oo 145
- 'Za)'(ls 83 timmaxidx ... 145
shifttime i e
i . 89 BIMmMeaniiiii e
Shiftx ... i . "
i ... 89 timmin ...
shifty ... i N, e
i 37 timminidx
showattribute i .
36 timpetl ...
showchunkspec oL, i e
.. 36 timrange oo oo
showcode i . o
.......... 36 timselavg ... i
showdate i o
.. 36 timselmax ...
showfilter o
.. 36 timselmeano,
showformat ! . o
.. 36 timselmin
showlevel i
..... 36 timselpetl
showltypeo il pseDEL] o
....... 36 timselrange
showmon i o
............ 36 timselstd
o i Istdl ... 141
showstdname 36 t%mse stdl o
731 0 < S 36 timselsum
showtime i UL o
showtimestamp 36 t%mse VAL o o
...... 36 timselvarl
showyear il i o
SIIl o 104 BIMSOrt oo
sinfc.). 32 timstd ... ﬁg
SIFOD oo 32 timstdl ... e
smooth 232 FIMSUIN © oo ettt e e e
smooth9 232 TIVAT © e e e
SP2ED et 210 timvarl ... ;
Sp28p 212 topo 226
splitcode i 47 topv(ei;duew2
splitdatec i 50 trend ...
splitday ... jlj; U
Spﬁzlgllcn)ljr ... 49 unpack ... 42
Splitlovel o 47 UV2AV e 213
T 49 uvDestag ... 236
splitmonccoccieeaeo.. 49 uvDestag ...
splitname i ZL; v
S‘p}}?‘)arém .. 49 VATSAVE « ettt ettiee e et 125
bpl}tbelab 50 A2 =) 00 L= 125
Spﬁtieb ' um 47 VAUSIEAIL «.evvveeeeeee e eaieee e 125
Spl%t . 1r"1 49 VAUSININ ©ovv i 125
- 1 Searmon 49 VATSTAIIEZE .« v v vvvvvtteeteeteeeeeeeeeeeennn.. 125
Spthyeal_”mon 47 varsstd ... 125
RS o 104 varsstdl ... 125
g 104 VATSSUIIL ot ottt ettt ie e ie e 125
SOt et e o
tdatm ... 234 VAISVAL ettt ettt it et e et e e
strbre 244 VArSVATL .ot 125
strbre ... -
...... 244 VCE o
strgal ... L o
strwin ... o o 243 verifygrid

262

Index Index
VEITAVE « o 140 yearstdl ... 154
vertfillmiss i 96 yearsub ... 110
VErtmaxcooeiiiiiiiiiiiiiiii 140 VEATSUIL ..ttt ittt e i e iaieee e 154
vertmeanooiiiiiiiiiie 140 VEAIVAL vttt ittt et 154
vertmino il 140 yearvarlo 154
VErtrangeoiiiiiiiiiiia.. 140 yhouraddol 111
vertstd ... 140 vhouravg i 159
vertstdl ... 140 vhourdiv i 111
VErtSUM ..ot 140 yvhourmax 159
VEIbVAL .« ottt 140 yvhourmean 159
vertvarl 140 vhourmin i 159
vhourmul 111

W vhourrange i, 159

WCE oo 243 vhourstd i 159
yhourstdlol 159

X vhoursub 111

XSINFO oo 33 yhoursum 159
XSinOp 33 yhourvar 159
yvhourvarl ool 159

Y ymonadd ... 113

ydayadd ... 112 57210010 AT 17« 168
ydayavg ... 165 yMONdiv ...t 113
ydaydiv ... 112 2 08103 0 LG [74
ydaymax ... 165 200103 T AP 74
ydaymean ... 165 ymongt ... 74
ydaymin ... 165 ymonle ... 74
ydaymul ... 112 ymonlt ... 74
ydaypetl ... 167 VINOIINAX .+ v veteeeteteeeeeeeeeeenenns 168
ydayrange ... 165 72 0070) 001 VT 3 1 N 168
ydaystd ... 165 20010380011 4 N 168
ydaystdl ... 165 ymonmul ... 113
ydaysub ... 112 g P4163 03T 74
ydaysum 165 ymonpct] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 170
ydayvar 165 VINONTANEE .« e v v v e et e et eeeeeeeee e 168
ydayvarl ... 165 ymonstd ... 168
ydrunavg ... 174 ymonstdl ... 168
ydrunmax ... 174 YIMONSUD .ot 113
VATUNIEAN .. otvvtet i 174 VIMONSUINL + e v vttt e eeeeeeeeeieeeennnnns 168
ydrunmin ... 174 g 0010304172 168
ydrunpetl ... o 176 ymonvarloii i 168
ydrunstd ... 174 yseasadd ... 114
ydrunstdl ... 174 VSEASAVE « e ettt e e e 171
ydrunsum ... 174 yseasdiv ... 114
yArunvar ... 174 VSCASEU « v et et et et e e 75
ydrunvarl ... oo 174 VSEASEE .+t vttt e e 75
yearadd 110 VSEASEL + it 75
VEATAVE e evetit ettt 154 yseasle ... 75
yeardiv ... 110 yseaslt (0]
FEATMAX © vttt ittt it 154 VSEASIIIAX .+ e e vvve et et eaeene et 171
yearmaxidx oo 154 VSEASIEAIL - v e ovve vttt et eaeeneeanens 171
VEATINCAIL .ottt iiieee e, 154 YSEASMIN ...t 171
VEATTIIL «oevvvtt ettt enas 154 yseasmul 114
yearminidxo oo 154 VSEASIIE ..ottt i 75
VEATTNONIEAIL . vt e v veee et neneeeennnnee. 153 yseaspctl ... 173
yearmul ... 110 VSCASTANZE '« v v vt eeeeee e eaiiee e, 171
yearpctl ... 156 yseasstd ... 171
VEATTAIIZE .« e e v veevet e et e e e e 154 yseasstdl ... 171
yearstd ... 154 yseassub ... 114

Index

Index

VSCASSUIIL .« weteeeeeeeeeeeeeeennn 171
FSEASVAT + v v et e e 171
yseasvarl ... 171
Z
zaxisdes ... 38
/70 0 A 133
zonkurt 133
/03 11 4 0¥ - AP 133
70) 810 1T ' PP 133
zonmedian 133
ZONIMUIL oottt ettt 133
zonpetl ... 133
776310 2 Y 133
zonskew ... 133
zonstd ... 133
zonstdl ... 133
ZONSUI vttt et et te e et ee e ieeeennns 133
/70 1372 G 133
ZONVATL ... 133

264

	Introduction
	Installation
	Unix
	MacOS
	Windows

	Usage
	Options
	Environment variables
	Operators
	Parallelized operators
	Operator parameter
	Operator chaining
	Chaining Benefits

	Advanced Usage
	Wildcards
	Argument Groups
	Applying a operator or chain to multiple inputs
	Apply with [:] notation
	Apply Keyword (LEGACY)

	Memory Requirements
	Horizontal grids
	Grid area weights
	Grid description
	ICON - Grid File Server

	Z-axis description
	Time axis
	Absolute time
	Relative time
	Conversion of the time

	Parameter table
	Missing values
	Mean and average

	Percentile
	Percentile over timesteps

	Regions

	Reference manual
	Information
	INFO - Information and simple statistics
	SINFO - Short information
	XSINFO - Extra short information
	DIFF - Compare two datasets field by field
	NINFO - Print the number of parameters, levels or times
	SHOWINFO - Show variable information
	SHOWATTRIBUTE - Show attributes
	FILEDES - Dataset description

	File operations
	APPLY - Apply operators
	COPY - Copy datasets
	TEE - Duplicate a data stream and write it to file
	PACK - Pack data
	UNPACK - Unpack data
	SETCHUNKSPEC - Specify chunking
	SETFILTER - Specify filter
	BITROUNDING - Bit rounding
	REPLACE - Replace variables
	DUPLICATE - Duplicates a dataset
	MERGEGRID - Merge grid
	MERGE - Merge datasets
	SPLIT - Split a dataset
	SPLITTIME - Split timesteps of a dataset
	SPLITSEL - Split selected timesteps
	SPLITDATE - Splits a file into dates
	DISTGRID - Distribute horizontal grid
	COLLGRID - Collect horizontal grid

	Selection
	SELECT - Select fields
	SELMULTI - Select multiple fields via GRIB1 parameters
	SELVAR - Select fields
	SELTIME - Select timesteps
	SELBOX - Select a box
	SELREGION - Select horizontal regions
	SELGRIDCELL - Select grid cells
	SAMPLEGRID - Resample grid
	SELYEARIDX - Select year by index
	SELTIMEIDX - Select timestep by index
	SELSURFACE - Extract surface

	Conditional selection
	COND - Conditional select one field
	COND2 - Conditional select two fields
	CONDC - Conditional select a constant
	MAPREDUCE - Reduce fields to user-defined mask

	Comparison
	COMP - Comparison of two fields
	COMPC - Comparison of a field with a constant
	YMONCOMP - Multi-year monthly comparison
	YSEASCOMP - Multi-year seasonal comparison

	Modification
	SETATTRIBUTE - Set attributes
	SETPARTAB - Set parameter table
	SET - Set field info
	SETTIME - Set time
	CHANGE - Change field header
	SETGRID - Set grid information
	SETZAXIS - Set z-axis information
	INVERT - Invert latitudes
	INVERTLEV - Invert levels
	SHIFTXY - Shift field
	MASKREGION - Mask regions
	MASKBOX - Mask a box
	SETBOX - Set a box to constant
	ENLARGE - Enlarge fields
	SETMISS - Set missing value
	VERTFILLMISS - Vertical filling of missing values
	TIMFILLMISS - Temporal filling of missing values
	SETGRIDCELL - Set the value of a grid cell

	Arithmetic
	EXPR - Evaluate expressions
	MATH - Mathematical functions
	ARITHC - Arithmetic with a constant
	ARITH - Arithmetic on two datasets
	DAYARITH - Daily arithmetic
	MONARITH - Monthly arithmetic
	YEARARITH - Yearly arithmetic
	YHOURARITH - Multi-year hourly arithmetic
	YDAYARITH - Multi-year daily arithmetic
	YMONARITH - Multi-year monthly arithmetic
	YSEASARITH - Multi-year seasonal arithmetic
	ARITHDAYS - Arithmetic with days
	ARITHLAT - Arithmetic with latitude

	Statistical values
	TIMCUMSUM - Cumulative sum over all timesteps
	CONSECSTAT - Consecute timestep periods
	VARSSTAT - Statistical values over all variables
	ENSSTAT - Statistical values over an ensemble
	ENSSTAT2 - Statistical values over an ensemble
	ENSVAL - Ensemble validation tools
	FLDSTAT - Statistical values over a field
	ZONSTAT - Zonal statistics
	MERSTAT - Meridional statistics
	GRIDBOXSTAT - Statistical values over grid boxes
	REMAPSTAT - Remaps source points to target cells
	VERTSTAT - Vertical statistics
	TIMSELSTAT - Time range statistics
	TIMSELPCTL - Time range percentile values
	RUNSTAT - Running statistics
	RUNPCTL - Running percentile values
	TIMSTAT - Statistical values over all timesteps
	TIMPCTL - Percentile values over all timesteps
	HOURSTAT - Hourly statistics
	HOURPCTL - Hourly percentile values
	DAYSTAT - Daily statistics
	DAYPCTL - Daily percentile values
	MONSTAT - Monthly statistics
	MONPCTL - Monthly percentile values
	YEARMONSTAT - Yearly mean from monthly data
	YEARSTAT - Yearly statistics
	YEARPCTL - Yearly percentile values
	SEASSTAT - Seasonal statistics
	SEASPCTL - Seasonal percentile values
	YHOURSTAT - Multi-year hourly statistics
	DHOURSTAT - Multi-day hourly statistics
	DMINUTESTAT - Multi-day by the minute statistics
	YDAYSTAT - Multi-year daily statistics
	YDAYPCTL - Multi-year daily percentile values
	YMONSTAT - Multi-year monthly statistics
	YMONPCTL - Multi-year monthly percentile values
	YSEASSTAT - Multi-year seasonal statistics
	YSEASPCTL - Multi-year seasonal percentile values
	YDRUNSTAT - Multi-year daily running statistics
	YDRUNPCTL - Multi-year daily running percentile values

	Correlation and co.
	FLDCOR - Correlation in grid space
	TIMCOR - Correlation over time
	FLDCOVAR - Covariance in grid space
	TIMCOVAR - Covariance over time

	Regression
	REGRES - Regression
	DETREND - Detrend time series
	TREND - Trend of time series
	TRENDARITH - Add or subtract a trend

	EOFs
	EOFS - Empirical Orthogonal Functions
	EOFCOEFF - Principal coefficients of EOFs

	Interpolation
	REMAPBIL - Bilinear interpolation
	REMAPBIC - Bicubic interpolation
	REMAPNN - Nearest neighbor remapping
	REMAPDIS - Distance weighted average remapping
	REMAPCON - First order conservative remapping
	REMAPLAF - Largest area fraction remapping
	REMAP - Grid remapping
	REMAPETA - Remap vertical hybrid level
	VERTINTML - Vertical interpolation
	VERTINTAP - Vertical pressure interpolation
	VERTINTGH - Vertical height interpolation
	INTLEVEL - Linear level interpolation
	INTLEVEL3D - Linear level interpolation from/to 3D vertical coordinates
	INTTIME - Time interpolation
	INTYEAR - Year interpolation

	Transformation
	SPECTRAL - Spectral transformation
	SPECCONV - Spectral conversion
	WIND2 - D and V to velocity potential and stream function
	WIND - Wind transformation
	FOURIER - Fourier transformation

	Import/Export
	IMPORTBINARY - Import binary data sets
	IMPORTCMSAF - Import CM-SAF HDF5 files
	IMPORTAMSR - Import AMSR binary files
	INPUT - Formatted input
	OUTPUT - Formatted output
	OUTPUTTAB - Table output
	OUTPUTGMT - GMT output

	Miscellaneous
	GRADSDES - GrADS data descriptor file
	AFTERBURNER - ECHAM standard post processor
	FILTER - Time series filtering
	GRIDCELL - Grid cell quantities
	SMOOTH - Smooth grid points
	DELTAT - Difference between timesteps
	REPLACEVALUES - Replace variable values
	GETGRIDCELL - Get grid cell index
	VARGEN - Generate a field
	TIMSORT - Timsort
	WINDTRANS - Wind Transformation
	ROTUVB - Rotation
	MROTUVB - Backward rotation of MPIOM data
	MASTRFU - Mass stream function
	PRESSURE - Pressure on model levels
	DERIVEPAR - Derived model parameters
	ADISIT - Potential temperature to in-situ temperature and vice versa
	RHOPOT - Calculates potential density
	HISTOGRAM - Histogram
	SETHALO - Set the bounds of a field
	WCT - Windchill temperature
	FDNS - Frost days where no snow index per time period
	STRWIN - Strong wind days index per time period
	STRBRE - Strong breeze days index per time period
	STRGAL - Strong gale days index per time period
	HURR - Hurricane days index per time period
	CMORLITE - CMOR lite
	VERIFYGRID - Verify grid coordinates
	HEALPIX - Change healpix resolution

	Contributors
	History
	External sources
	Contributors

	Environment Variables
	Parallelized operators
	Standard name table
	Grid description examples
	Example of a curvilinear grid description
	Example description for an unstructured grid

	Index

