
Scotch and PT-Scotch 7.0

Hands-On Guide

(version 7.0.9)

François Pellegrini

Université de Bordeaux & LaBRI, UMR CNRS 5800

TadAAM team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE

francois.pellegrini@u-bordeaux.fr

August 29, 2025

1

Contents

1 Introduction 2

2 Compiling and executing Scotch 3

2.1 Required tools . 3

2.2 32 or 64 bits? . 3

2.2.1 Integer size issues in Scotch 3

2.2.2 Integer size issues in PT-Scotch 4

2.3 Linking with the proper Scotch library 4

2.4 Linking with the proper Scotch error handling library 4

2.5 Multi-threading . 5

3 Programming with Scotch 6

3.1 Integer type . 6

3.2 Data structures . 6

3.2.1 Allocation of data structures 6

3.2.2 Initialization and deconstruction of data structures 7

3.3 Error handling . 7

3.4 File input/output . 8

3.5 Checking user input . 8

3.6 Basic use of Scotch . 8

3.6.1 Graph partitioning . 9

3.6.2 Static mapping . 9

3.6.3 Sparse matrix ordering . 9

3.7 Multi-threading . 9

4 Running Scotch 9

4.1 Multi-threading . 10

5 Troubleshooting 10

5.1 Troubleshooting check-list . 11

1 Introduction

This document is a quick reference guide for people willing to use Scotch in their

projects. By “Scotch”, we designate collectively both the centralized-memory

software Scotch and the distributed-memory PT-Scotch software, which are

components of the Scotch project.

This guide provides information about the proper way to install and use Scotch,

by providing snippets of code and simple examples. It is therefore incomplete

by nature. Users willing to obtain more information may refer to the following

documents:

• The Scotch User’s Manual;

• The PT-Scotch User’s Manual;

• The source code of the various test programs in the src/check directory.

Users willing to install their own local version of Scotch should also refer to

the following documents:

• The README.md file;

2

https://gitlab.inria.fr/scotch/scotch/-/blob/master/doc/scotch_user7.0.pdf
https://gitlab.inria.fr/scotch/scotch/-/blob/master/doc/ptscotch_user7.0.pdf
https://gitlab.inria.fr/scotch/scotch/-/tree/master/src/check
https://gitlab.inria.fr/scotch/scotch/-/blob/master/INSTALL.txt

• The INSTALL.txt file.

People willing to do research on graph partitioning with Scotch and implement

their own algorithms in Scotch may refer to the Scotch Maintenance Manual.

2 Compiling and executing Scotch

2.1 Required tools

In order to compile Scotch, one needs:

• GNU make;

• possibly CMake, version at least 3.10;

• a C compiler that can handle the C99 standard (and is parametrized to do

so);

• Flex and Bison, version at least 3.4;

• a MPI implementation, for PT-Scotch.

2.2 32 or 64 bits?

Scotch libraries can typically be found in 32 bit or 64 bit implementations. It

is possible to use both, but this requires a bit of tweaking (using the SCOTCH

NAME SUFFIX flag), because two coexisting versions cannot expose simultaneously

routines with same names, all the more when they expect integer types of different

sizes. In most of the cases, however, only one version will be linked against the

user’s program, which requires no specific action.

One should not mistake the size of machine integers, that is, ints, and the size

of integer values used within Scotch, that is, SCOTCH Nums and SCOTCH Idxs.

• SCOTCH Num is the generic Scotch integer type for values. It is used, e.g.,

as the cell type for vertex and edge arrays that describe graphs. Its width can

be defined at compile time by way of the INTSIZE32 or INTSIZE64 flags.

By default, its width is that of the int type.

• SCOTCH Idx is the generic Scotch memory index type. Its width should

be that of the address space. It is used, e.g., to represent the global amount

of memory consumed by Scotch routines (see, e.g., SCOTCH memMax()), or

the indices in memory of the cells of vertex and edge arrays, with respect to a

given reference (see, e.g., scotchfgraphdata()). Its witdh can be defined

at compile time by way of the IDXSIZE32 or IDXSIZE64 flags. By default,

its width is that of the int type.

2.2.1 Integer size issues in Scotch

Since Scotch does not depend on third-party libraries, there is no risk induced

by using Scotch integer datatypes of a size that differs from that of the int

type. One may use 32-bit SCOTCH Nums in a 64-bit environment, in order to save

memory, or use 64-bit SCOTCH Nums in a 32-bit environment, to handle big graphs

(provided the address space is large enough). In all cases, the width of SCOTCH

Idx should be that of an address, that is, nowadays, 64 bits.

RULE: sizeof (SCOTCH Num) <= sizeof (SCOTCH Idx) .

RULE: sizeof (SCOTCH Idx) >= sizeof (void *) .

3

https://gitlab.inria.fr/scotch/scotch/-/blob/master/INSTALL.txt
https://gitlab.inria.fr/scotch/scotch/-/blob/master/doc/scotch_maint7.0.pdf

2.2.2 Integer size issues in PT-Scotch

The fact that SCOTCH Nums are bigger than ints may cause integer overflow issues

in PT-Scotch. Indeed, in the prototypes of most communication routines of the

MPI interface, counts and array indices are declared as ints. Consequently, for

big graphs comprising more that 2 billion vertices and/or edges, that can only be

represented with 64-bit SCOTCH Nums, it may happen that message counts and

displacement values go beyond the 2 billion boundary, inevitably resulting in a

communication subsystem crash.

The ability to use 64-bit SCOTCH Nums with 32-bit MPI implementations was

a temporary hack to break the “2-billion barrier”, in a time when there were no

64-bit implementations of MPI, while knowing that there would be a breaking point

beyond which this solution would not work (i.e., when the amount of data to be

exchanged also breaks this boundary).

To be on the safe side when using PT-Scotch on big graphs, the width of the

SCOTCH Num datatype should always be that of the int datatype, whatever it is.

ADVICE: sizeof (SCOTCH Num) == sizeof (int) . This is the

behavior by default.

ADVICE: To use PT-Scotch on big graphs, use 64-bit ints and link

against a 64-bit implementation of MPI.

1 if (sizeof (SCOTCH_Num) > sizeof (int)) {

2 SCOTCH_errorPrintW ("PT-Scotch users, beware: here be dragons");

3 proceedWithCaution ();

4 }

2.3 Linking with the proper Scotch library

Users should make sure that they link their programs with the proper Scotch

library, that is, the library whose type width matches the one which was defined in

the scotch.h and ptscotch.h header files.

This can be verified dynamically at run time, by comparing the value returned

by the SCOTCH numSizeof() routine with that defined in the Scotch header

files that were used at compile time.

RULE: SCOTCH numSizeof () == sizeof (SCOTCH Num) .

ADVICE: Insert a sanity check at the beginning of your code, to rule out

this issue.

1 if (SCOTCH_numSizeof () != sizeof (SCOTCH_Num)) {

2 SCOTCH_errorPrint ("Don’t even try to call any Scotch routine");

3 betterQuitNow ();

4 }

2.4 Linking with the proper Scotch error handling library

When a Scotch routine encounters an error, it generates an error message, by call-

ing the SCOTCH errorPrint() routine, and tries to returns an error value. By

design, this routine is not part of the standard Scotch libraries, to allow editors

of third-party software to funnel Scotch error messages to their own error log-

ging system, by providing their own implementation of SCOTCH errorPrint().

4

Scotch users who do not want to undertake this task have just to link their soft-

ware with one of the defaut error handling libraries that are part of the Scotch

distribution.

• libscotcherr, which sends the error message to the standard error stream,

and tries to return an error value to the caller routine. Several error messages

may be produced, as control returns to upper layers of Scotch routines and

errors are detected in turn;

• libscotcherrexit, which sends the error message to the standard error

stream, and exits immediately after. No subsequent messages are produced,

which may have helped to locate the error;

• libptscotcherr, which sends the error message, comprising the MPI pro-

cess number, to the standard error stream, and tries to return an error value

to the caller routine;

• libptscotcherrexit, which sends the error message, comprising the MPI

process number, to the standard error stream, and exits immediately after.

RULE: Do not link with a libptscotcherr* library if you do not use

MPI within your program.

ADVICE: Link with a libptscotcherr* library when using PT-

Scotch routines within a MPI program.

2.5 Multi-threading

Since version v7.0, Scotch benefits from dynamic multi-threading: most compute-

intensive algorithms will use several threads, whenever available. The use of

threaded algorithms has to be activated by setting some compilation flags, notably:

• COMMON PTHREAD: activate threads at the service routine level (e.g.: I/O

compression-decompression).

• COMMON PTHREAD AFFINITY LINUX: use the Linux API for thread affinity

management. Indeed, to enhance memory locality and efficiency, it is better

for each thread to be assigned to a given processing element. While the API

for this feature is not normalized, the Linux API is quite standard. No other

thread affinity API is used in Scotch at the time being.

• SCOTCH PTHREAD: activate threads for the shared-memory algorithms of

Scotch and PT-Scotch (which do not require to have a thread-safe im-

plementation of MPI);

• SCOTCH PTHREAD MPI: activate threads for the distributed-memory algo-

rithms of PT-Scotch. Starting from v7.0.4, PT-Scotch dynamically

adapts its behavior to the thread-safety level of the MPI library against which

it is linked. In particular, it will take advantage of the capabilities of the MPI

THREAD MULTIPLE level, if it is enabled, to run some threaded algorithms in

parallel across compute nodes.

• SCOTCH PTHREAD NUMBER: default maximum number of threads to be used.

A value of 1 means that no multi-threading will take place in absence of

specific user action, and a value of -1 that Scotch will use all the threads

provided by the system at run time. Set to -1 by default if no value provided.

5

These flags are usually activated in compilation configuration files, but this may

depend on the packager for your distribution and of the thread-safety level of your

local MPI package. For each of these classes, there exist sub-flags to activate or deac-

tivate specific features and algorithms (e.g., COMMON PTHREAD FILE). For CMake,

these flags may have different names. Please refer to the INSTALL.txt file of your

version of Scotch.

RULE: Only activate multi-threaded, distributed memory algorithms at

compile-time if your local MPI implementation supports it.

ADVICE: Activate threads whenever possible, since they are likely to

speed-up computations.

ADVICE: Activate the extension for thread affinity whenever possible.

3 Programming with Scotch

3.1 Integer type

All integer values used by Scotch to describe its objects are of type SCOTCH Num,

which may not be the standard integer type, depending on compilation options (see

Section 2.2). Make sure to declare and use SCOTCH Nums in your program whenever

necessary, even for integer constants.

1 #include <scotch.h>

2 ...

3 SCOTCH_Num vertnum;

1 INCLUDE "scotchf.h"

2 ...

3 INTEGER*SCOTCH_NUMSIZE VERTNUM

1 include ’scotchf.h’

2 ...

3 integer(SCOTCH_NUMSIZE) :: vertnum

RULE: In FORTRAN, in the absence of function prototypes, always pass

integer constants through variables of type SCOTCH Num, to make sure the

integer type width will always be the proper one.

3.2 Data structures

All data structures in the Scotch API are “opaque objects”, that is, mock data

structures meant to hide their contents from the user. Hence, interactions with

Scotch can only take place through its API, which preserves ascending compati-

bility with future versions (and backwards compatibility as well, to some extent).

3.2.1 Allocation of data structures

Scotch data structures can be allocated at compile time by specifying memory ar-

eas of the adequate size. For data alignment concerns, these structures are exposed

as arrays of doubles, of a size defined in the API.

1 #include <scotch.h>

2 ...

3 SCOTCH_Graph grafdat;

6

https://gitlab.inria.fr/scotch/scotch/-/blob/master/INSTALL.txt

1 INCLUDE "scotchf.h"

2 ...

3 DOUBLEPRECISION GRAFDAT (SCOTCH_GRAPHDIM)

1 include ’scotchf.h’

2 ...

3 doubleprecision, dimension (SCOTCH_GRAPHDIM) :: grafdat

Alternately, users can allocate memory for Scotch objects from the heap at

run time. The size of these objects can be based on the size values provided at

compile time (e.g., SCOTCH GRAPHDIM), or returned by the API routines SCOTCH

*Sizeof(). In the latter case, users will be able to link with any version of the

Scotch library without having to recompile their code.

Users may also directly obtain a memory pointer to dynamically allocated

Scotch objects, using the C API SCOTCH *Alloc() routines. In this case, this

memory must be freed using the SCOTCH memFree() routine.

3.2.2 Initialization and deconstruction of data structures

Whether they are statically or dynamically allocated, all Scotch opaque objects

should be initialized before use. To do so, one must use the *Init() routine

defined for each object category.

Similarly, after their last use, these structures must be deconstructed, using the

*Exit() routine associated with each object category. The deconstructor routine

is needed to free the internal memory associated with the object. When objects

depend on other objects, by way of references, the referenced object must not be

deconstructed before the referring object (e.g., a SCOTCH Graph refrenced by a

SCOTCH Mapping).

3.3 Error handling

For the C-language API of Scotch, errors are usually reported by returning a

non-zero int value ; please check the user’s manuals for more information. For

the FORTRAN-language API, errors are reported through a specific variable, of

integer type, which is passed as the last argument of Scotch routines. This

variable should be initialized to 0, and checked afterwards to see whether its value

has changed. For both APIs, the type of these error values is a standard int, not

a SCOTCH Num.

1 SCOTCH_Graph grafdat;

2 FILE * fileptr;

3

4 if (SCOTCH_graphLoad (&grafdat, fileptr, -1, 0) != 0) {

5 fprintf (stderr, "Could not read graph\n");

6 fclose (fileptr);

7 exit (EXIT_FAILURE);

8 }

1 DOUBLEPRECISION GRAFDAT (SCOTCH_GRAPHDIM)

2 INTEGER FILENUM

3 INTEGER IERR

4

5 IERR = 0

6 ...

7 CALL SCOTCHFGRAPHLOAD (GRAFDAT (1), 42, -1, 0, IERR)

8 IF IERR .NEQ. 0 THEN

7

9 PRINT *, "Could not read graph"

10 CALL CLOSE (42)

11 CALL EXIT_C (EXIT_FAILURE)

12 END IF

3.4 File input/output

C-language API routines handle files as streams, of type FILE *. This allows users

to read and/or write from any kind of I/O structure (e.g., regular files, but also

pipes, network sockets, etc.). FORTRAN-language API routines handle files as I/O

units, which are turned internally into file descriptors and then into C streams, by

adding buffering capabilities. This added buffering improves performance but may

bring input over-consumption, if the same unit is used for different read operations.

1 SCOTCH_Graph grafdat;

2 FILE * fileptr;

3

4 SCOTCH_graphInit (&grafdat);

5 fileptr = fopen ("path/to/the/graph/file.grf");

6 SCOTCH_graphLoad (&grafdat, fileptr, -1, 0);

7 fclose (fileptr);

1 DOUBLEPRECISION GRAFDAT (SCOTCH_GRAPHDIM)

2 INTEGER FILENUM

3 INTEGER IERR

4

5 IERR = 0

6 CALL SCOTCHFGRAPHINIT (GRAFDAT (1), IERR)

7 OPEN (UNIT = 42, FILE = "path/to/the/graph/file.grf")

8 CALL SCOTCHFGRAPHLOAD (GRAFDAT (1), 42, -1, 0, IERR)

9 CLOSE (UNIT = 42)

3.5 Checking user input

Scotch provides graph consistency checking routines, both for centralized and

distributed graphs. These routines will perform a set of sanity checks on the graph

data (e.g., assert that when vertex v
′ is in the list of neighbors of v, then v is in the

list of neighbors of v′, etc.).

Before considering reporting an issue to the Scotch team, please run the graph

checking routine on your graph structure (similarly, the gtst and dgtst command-

line programs check the consistency of graph files). If the graph consistency checking

routine reports an error, then all subsequent Scotch errors are likely to derive from

this non-consistent input. If no error is reported and Scotch crashes afterwards,

then the issue is most likely on Scotch’s side.

ADVICE: In the early stages of development of your program and/or

in debug mode, always call the relevant Scotch graph checking routine

(SCOTCH graphCheck() or SCOTCH dgraphCheck() before launching

partitioning tasks.

3.6 Basic use of Scotch

The behavior of Scotch can be parametrized in many ways (threading, strategy

strings, etc.). However, routines have been designed for a simplified use, for graph

partitioning, static mapping, and sparse mapping ordering.

8

3.6.1 Graph partitioning

1 SCOTCH_Strat stradat;

2 SCOTCH_Graph grafdat;

3 SCOTCH_Num vertnbr;

4 SCOTCH_Num partnbr;

5 SCOTCH_Num * parttab;

6

7 SCOTCH_StratInit (&stradat); /* Default strategy will be used */

8 SCOTCH_graphInit (&grafdat);

9 ... /* Fill-in graph structure */

10 SCOTCH_graphSize (&grafdat, &vertnbr, NULL);

11 parttab = (SCOTCH_Num *) malloc (vertnbr * sizeof (SCOTCH_Num));

12 partnbr = ... /* Set number of parts */

13 SCOTCH_graphPart (&grafdat, partnbr, &stradat, parttab);

14 SCOTCH_graphExit (&grafdat);

15 SCOTCH_StratExit (&stradat);

1 doubleprecision :: stradat (SCOTCH_STRATDIM)

2 doubleprecision :: grafdat (SCOTCH_GRAPHDIM)

3 integer(SCOTCH_NUMSIZE) :: vertnbr

4 integer(SCOTCH_NUMSIZE), allocatable :: parttab (:)

5 integer :: ierr

6

7 ierr = 0

8 call scotchfstratinit (stradat (1), ierr)

9 call scotchfgraphinit (grafdat (1), ierr)

10 ... ! Fill-in graph structure

11 call scotchfgraphsize (grafdat (1), vertnbr, grafdat (1), ierr)

12 allocate (parttab (vertnbr))

13 partnbr = ... ! Set number of parts

14 call scotchfgraphpart (grafdat (1), partnbr, stradat (1), parttab (1),

ierr)

15 call scotchfgraphexit (grafdat (1))

16 call scotchfstratexit (stradat (1))

3.6.2 Static mapping

Static mapping is carried out in the same way as graph partitioning. The sole

difference is that, instead of providing a number of parts, one has to provide a

target architecture, on a prescribed topology. See the Scotch user’s manual for

all the available sorts of target architectures, including how to turn a graph into a

target architecture.

3.6.3 Sparse matrix ordering

3.7 Multi-threading

Since version v7.0, Scotch implements a dynamic thread management system.

RULE: Only activate multi-threaded, distributed memory algorithms at

compile-time if your local MPI implementation supports it.

ADVICE: 4 to 8 threads per MPI process is a good compromise in terms

of performance.

4 Running Scotch

In addition to the functions it provides through the Scotch and PT-Scotch

libraries, the Scotch project provides a set of standalone programs to perform basic

9

functions: graph and target architecture management, partitioning and mapping,

and sparse matrix reordering.

Centralized-memory programs can be launched directly from the command line,

while distributed-memory program, based on MPI, have to be launched through a

specific program like mpiexec or mpirun, depending on the MPI implementations.

4.1 Multi-threading

Since version v7.0, Scotch implements a dynamic thread management system.

Without specific user instruction, Scotch programs and routines will try to use all

the threads available on the node. The user can coerce the behavior of Scotch at

run time by using the SCOTCH PTHREAD NUMBER environment variable, which can

override the -DSCOTCH PTHREAD NUMBER=x definition provided at compile time.

Setting its value to -1 lets the software use all the threads available, while a positive

value defines the maimum number of threads that can be used at run time, among

all the available threads.

1 % export SCOTCH_PTHREAD_NUMBER=2

2 % gpart 5 /tmp/brol.grf /tmp/brol.map -vmt

3 % export SCOTCH_PTHREAD_NUMBER=4

4 % gpart 5 /tmp/brol.grf /tmp/brol.map -vmt

5 % export SCOTCH_PTHREAD_NUMBER=-1

6 % gpart 5 /tmp/brol.grf /tmp/brol.map -vmt

When running PT-Scotch in a multi-threaded way, and in case several MPI

processes are mapped onto the same compute nodes, it is important to ensure that

each of these processes will not try to create as many threads as it can on its node.

Else, a plethora of competing threads would lead to huge performance loss on each

node. Options can be passed to the mpiexec command to make sure each MPI

process spawned on some node is assigned a non-overlapping set of thread slots,

within which it can safely create a smaller set of threads.

ADVICE: Make sure MPI processes have dedicated, non-overlapping,

thread slots attached to them, so that the threads they may create will

not overlap and compete for the same thread slots on the same compute

nodes.

ADVICE: In case non-overlapping thread slots cannot be created for MPI

processes, coerce Scotch to using only one thread per MPI process.

5 Troubleshooting

Although Scotch is a mature and extensively tested software, it is still possible

that remaining bugs may show off in specific cases, or that specific configurations

and graph topologies may induce an exceptional behavior (poor partition quality,

etc.).

Most systematic errors, which occur when using Scotch for the first time, are

due to configuration issues, such as integer type mismatch (see Section 2.2). These

errors can be ruled out quite quickly, e.g. by comparing the sizes of integer types

used by the application and by Scotch, etc.

In case of execution errors (e.g., memory shortage, or other run-time errors),

Scotch routines will output an error message on the standard error stream, and

either return an error value or terminate the program, depending on the Scotch

error handling library against which the program is linked (see Section 2.4).

10

Debug compilation flags can make Scotch perform more internal checks

and provide finer insights into execution issues. Of course, the level of extra

sanity checking impacts compute time. The most relevant debugging level for

assessing issues is obtained by compiling Scotch with the flag -DSCOTCH DEBUG

ALL.

5.1 Troubleshooting check-list

1. Check whether the Scotch test programs run without errors.

2. Check integer size match between your code and the libScotch, using the

library function SCOTCH numSizeof(). This general sanity check may be

beneficially included in all software linked against the libScotch library.

3. In case Scotch works for small cases, yet produces “out of memory” er-

rors for bigger cases when the number of vertices and/or edges nears the

billion, Scotch must be recompiled in 64-bit integer mode, by setting the

INTSIZE64 flag (see Section 2.2); the IDXSIZE64 flag should always be set

on current architectures.

4. Apply the Scotch input data consistency checking routines (e.g., SCOTCH

graphCheck(), SCOTCH dgraphCheck(), etc.) before calling partitioning

or ordering routines.

5. Compile Scotch with symbolic debugging options, so that system error mes-

sages (e.g., stack traces) are as informative as possible.

6. Whenever possible, run a memory checker (e.g., Valgrind) on the executa-

bles. Alternately, use a memory library that allows for consistency checking

(e.g., by setting the MALLOC CHECK environment variable when using the

glibc). Alternately, compile Scotch with the -DCOMMON MEMORY CHECK

flag, to activate a (minimal) memory consistency checking in Scotch.

7. Whenever possible, try to find the smallest possible reproducer, in terms of

graph size and/or number of nodes and threads.

ADVICE: Configure your execution environment so that error messages

are collected and displayed to the end user. For PT-Scotch, this may

require to tweak your MPI execution environment so as to funnel error

messages from remote nodes.

RULE: Before reporting a bug to the Scotch team, always run Scotch in

debug mode and collect its error messages from the standard error stream.

11

	Introduction
	Compiling and executing Scotch
	Required tools
	32 or 64 bits?
	Integer size issues in Scotch
	Integer size issues in PT-Scotch

	Linking with the proper Scotch library
	Linking with the proper Scotch error handling library
	Multi-threading

	Programming with Scotch
	Integer type
	Data structures
	Allocation of data structures
	Initialization and deconstruction of data structures

	Error handling
	File input/output
	Checking user input
	Basic use of Scotch
	Graph partitioning
	Static mapping
	Sparse matrix ordering

	Multi-threading

	Running Scotch
	Multi-threading

	Troubleshooting
	Troubleshooting check-list

