Scotch and libScotch 7.0 User’s Guide

(version 7.0.9)

Francois Pellegrini
Université de Bordeaux & LaBRI, UMR CNRS 5800
TadAAM team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE
francois.pellegrini@labri.fr

August 29, 2025

Abstract

This document describes the capabilities and operations of SCOTCH and
LIBSCOTCH, a software package and a software library devoted to static map-
ping, edge- and vertex-based graph partitioning, and sparse matrix block or-
dering of graphs and meshes/hypergraphs. It gives brief descriptions of the
algorithms, details the input/output formats, instructions for use, installation
procedures, and provides a number of examples.

ScoTcH is distributed as free/libre software, and has been designed such
that new partitioning or ordering methods can be added in a straightforward
manner. It can therefore be used as a testbed for the easy and quick coding
and testing of such new methods, and may also be redistributed, as a library,
along with third-party software that makes use of it, either in its original or
in updated forms.

Contents

1

Introduction

1.1 Static mapping
1.2 Sparse matrix ordering
1.3 Contents of this document

The Scotch project

2.1 Description

2.2 Availability oo

Static mapping algorithms

3.1 Cost function and performance criteria

3.2 The Dual Recursive Bipartitioning algorithm
3.2.1 Partial cost function
3.2.2 Execution scheme

3.2.3 Clustering by mapping onto variable-sized architectures
3.3 Static mapping methodso oo

3.4 Graph bipartitioning methods
Sparse matrix ordering algorithms
4.1 Performance criteria
4.2 Minimum Degree
4.3 Nested dissection L oo
4.4 Hybridization oL
4.5 Ordering methods,
4.6 Graph separation methodso
Updates
5.1 Changes in version 7.0 from version 6.1
5.2 Changes in version 6.1 from version 6.0
5.3 Changes in version 6.0 from version 5.1
5.4 Changes in version 5.1 from version 5.0
Files and data structures
6.1 Graphfiles
6.2 Meshfiles
6.3 Geometry files
6.4 Target files L
6.4.1 Decomposition-defined architecture files
6.4.2 Algorithmically-coded architecture files
6.4.3 Variable-sized architecture files
6.5 Mapping files
6.6 Ordering files
6.7 Vertex list files
Programs
7.1 Invocation L
7.2 Using multi-threading oL
7.3 Using compressed files
7.4 Description e
741 acpl ...

o o I

o ©

10
10
11
12
13
14
14
16

18
18
18
18
19
19
20

21
21
22
22
23

742 amk ¥ oL 36
7.4.3 amk_grf 38
744 atst ..o e 39
TAD OV Lo e 39
T4.6 gmap / gpart . . . i 40
747 gmkF oL 42
748 gmkmsh 43
749 gmtst 44
7.4.10 gord e 44
7411 gotst oL 46
7412 gout 47
7413 gtst 50
TA.14 MCV . .o e e 50
7415 mmk_* oL 51
7416 mordo e 52
TALT mEst ... 53

8 Library 53
8.1 Calling the routines of LIBSCOTCH 54
8.1.1 Calling from C 54
8.1.2 Calling from Fortran 55
8.1.3 Compiling and linking 56
8.1.4 Dynamic library issues 56
8.1.5 Machine word size issues 56
8.1.6 Using multi-threading 57

8.2 Datatypes 58
8.2.1 SCOTCH_Arch architecture type 58
8.2.2 SCOTCH_Graph graph type 58
8.2.3 SCOTCH.Meshmeshtype, 60
8.2.4 SCOTCH-Geom geometry type 63
8.2.5 SCOTCH_Ordering block ordering format 63

8.3 Strategy strings 64
8.3.1 Using default strategy strings 64
8.3.2 Mapping strategy strings 66
8.3.3 Graph bipartitioning strategy strings 69
8.3.4 Vertex partitioning (with overlap) strategy strings 72
8.3.5 Ordering strategy strings 74
8.3.6 Node separation strategy strings 7

8.4 Target architecture handling routines 81
8.4.1 SCOTCH_archAlloC v v v v v v i i i 81
8.4.2 SCOTCH.archExit 81
8.4.3 SCOTCH_archInit 82
8.4.4 SCOTCH.archLoad 82
8.4.5 SCOTCH.archName 82
8.4.6 SCOTCH_archSave, 83
8.4.7 SCOTCH.archSize 83
8.4.8 SCOTCH.archSizeof 84

8.5 Target architecture creation routines 84
8.5.1 SCOTCH.archBuildO / SCOTCH.archBuild 84
8.5.2 SCOTCH.archBuild2 85
8.5.3 SCOTCH.archCmplt i .. 86

8.6

8.7

8.8

8.5.4 SCOTCH.archCmpltw« .. oo v v v 86
8.5.5 SCOTCH.archHcub i i 87
8.5.6 SCOTCH.archLtleaf 87
8.5.7 SCOTCH_archMesh2 88
8.5.8 SCOTCH.archMesh3 89
8.5.9 SCOTCH_archMeshX, 89
8.5.10 SCOTCH._archSub 90
8.5.11 SCOTCH._archTleaf 90
8.5.12 SCOTCH_archTOrusS2« v v v v v v ittt e e e 91
8.5.13 SCOTCH_archTorus3 o v v v v v v v v .. 91
8.5.14 SCOTCH_archTorusX v v v v v v v e e e e 92
8.5.15 SCOTCH._archVemplt v i e e 92
8.5.16 SCOTCH_archVhcub 93
Target domain handling routines 93
8.6.1 SCOTCH_.archDOmMALIOC . .« v v v v v vt e e 93
8.6.2 SCOTCH_archDomBipart 94
8.6.3 SCOTCH_archDomFrst 94
8.6.4 SCOTCH_archDomSize v o v v v v v ... 95
8.6.5 SCOTCH.archDomSizeof 95
8.6.6 SCOTCH_archDomTerm v v v v v v v v v .. 95
8.6.7 SCOTCH.archDomWght 96
8.6.8 SCOTCH_archDomDist 96
8.6.9 SCOTCH_archDOmNUM « v v v v v v v it e e e e 97
Graph handling routines oL oL 97
8.7.1 SCOTCH_graphRAlloC v v v v v vt it et e 97
8.7.2 SCOTCH_-graphBase 98
8.7.3 SCOTCH.graphBuild 98
8.74 SCOTCH.graphCheck 100
8.7.5 SCOTCH_graphCoarsen 100
8.7.6 SCOTCH_graphCoarsenBuild 101
8.7.7 SCOTCH_graphCoarsenMatch 102
8.7.8 SCOTCH_.graphColor v v v v v v v e e e e 103
8.7.9 SCOTCH_graphData 104
8.7.10 SCOTCH_graphDiamPV v v v 105
8.7.11 SCOTCH_graphDUump « v v v v v v v i e e e 106
8.7.12 SCOTCH_graphExit 106
8.7.13 SCOTCH_graphFree 106
8.7.14 SCOTCH_graphInducelist 107
8.7.15 SCOTCH_graphInducePart 107
8.7.16 SCOTCH_graphInit 108
8.7.17 SCOTCH_graphLoad 108
8.7.18 SCOTCH_graphSave, 109
8.7.19 SCOTCH_graphSize 110
8.7.20 SCOTCH_graphSizeof 110
8.7.21 SCOTCH_graphStat 110
High-level graph partitioning, mapping and clustering routines . . . 111
8.8.1 SCOTCH_graphMap« . o v v v v v v v v 112
8.8.2 SCOTCH_.graphMapFixed 113
8.8.3 SCOTCH_graphPart 113
8.8.4 SCOTCH.graphPartFixed. 114
8.8.5 SCOTCH_graphPartOvl 115

8.9

8.10

8.11

8.12

8.13

8.14

8.8.6 SCOTCH_graphRemap « o v v v v v v v v 116

8.8.7 SCOTCH_graphRemapFixed 117
8.8.8 SCOTCH_-graphRepart 118
8.8.9 SCOTCH_graphRepartFixed 119
Low-level graph partitioning, mapping and clustering routines 121
8.9.1 SCOTCH_-graphMapCompute 121
8.9.2 SCOTCH.graphMapExit 121
8.9.3 SCOTCH_graphMapFixedCompute 122
8.9.4 SCOTCH.graphMapInit 122
8.9.5 SCOTCH.graphMaplLoad «....... 123
8.9.6 SCOTCH_graphMapSave 124
8.9.7 SCOTCH_graphMapView 124
8.9.8 SCOTCH_graphRemapCompute 125
8.9.9 SCOTCH_graphRemapFixedCompute 126
8.9.10 SCOTCH_graphTabLoad 127
8.9.11 SCOTCH_graphTabSave 127
High-level graph ordering routines 128
8.10.1 SCOTCH_graphOrder« 128
Low-level graph ordering routines 129
8.11.1 SCOTCH_graphOrderCheck 129
8.11.2 SCOTCH_graphOrderCompute 130
8.11.3 SCOTCH._graphOrderComputeList 130
8.11.4 SCOTCH_-graphOrderExit 131
8.11.5 SCOTCH_graphOrderInit 132
8.11.6 SCOTCH_graphOrderLoad 133
8.11.7 SCOTCH_graphOrderSave 133
8.11.8 SCOTCH_graphOrderSaveMap « .« ... 134
8.11.9 SCOTCH_graphOrderSaveTree 134
Mesh handling routines L Lo 135
8.12.1 SCOTCH.MeshALloC v v v v v v vttt e et e 135
8.12.2 SCOTCH.meshBuild 135
8.12.3 SCOTCH.meshCheck 137
8.12.4 SCOTCH.meshData v v v i .. 137
8.12.5 SCOTCH.meshExit 139
8.12.6 SCOTCH.meshGraph 139
8.12.7 SCOTCH.meshGraphDual 140
8.12.8 SCOTCH.meshInit 140
8.12.9 SCOTCH.meshLoad o o v v v iii v .. 141
8.12.10 SCOTCH.meshSave v v i v v, 141
8.12.11 SCOTCH.meshSize i ... 142
8.12.12SCOTCH.meshSizeof 142
8.12.13SCOTCH.meshStat 143
High-level mesh ordering routines 144
8.13.1 SCOTCH.meshOrder 144
Low-level mesh ordering routines 145
8.14.1 SCOTCH.meshOrderCheck 145
8.14.2 SCOTCH.meshOrderCompute 145
8.14.3 SCOTCH.meshOrderExit 146
8.14.4 SCOTCH.meshOrderInit 146
8.14.5 SCOTCH.meshOrderSave 147
8.14.6 SCOTCH.meshOrderSaveMap« ... 148

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.14.7 SCOTCH.meshOrderSaveTree 148

Strategy handling routines L. 149
8.15.1 SCOTCH_StratAlloC« v v v v v v vt e i e 149
8.15.2 SCOTCH.stratExit 149
8.15.3 SCOTCH_stratInit 150
8.15.4 SCOTCH_stratSave 150
8.15.5 SCOTCH_stratSizeof 151
Strategy creation routines 151
8.16.1 SCOTCH_stratGraphBipart 151
8.16.2 SCOTCH_stratGraphClusterBuild 152
8.16.3 SCOTCH_stratGraphMap 152
8.16.4 SCOTCH_stratGraphMapBuild. 153
8.16.5 SCOTCH_stratGraphPartOvl 153
8.16.6 SCOTCH_stratGraphPartOvlBuild 154
8.16.7 SCOTCH_stratGraphOrder 154
8.16.8 SCOTCH_stratGraphOrderBuild 155
8.16.9 SCOTCH_stratMeshOrder 156
8.16.10 SCOTCH_stratMeshOrderBuild 156
Geometry handling routines L. 157
8.17.1 SCOTCH_.geomALllOoC . . . v v v v v v v ittt e e 157
8.17.2 SCOTCH_geomData o v v 157
8.17.3 SCOTCH_.geOmMEXIt . . . v v v v v v v v e e e e 158
8.17.4 SCOTCH_-geomInit 158
8.17.5 SCOTCH_geomSizeof 159
8.17.6 SCOTCH._.graphGeomLoadChac 159
8.17.7 SCOTCH_graphGeomLoadHabo 160
8.17.8 SCOTCH_graphGeomLoadScot 161
8.17.9 SCOTCH_graphGeomSaveChac 161
8.17.10 SCOTCH_graphGeomSaveScot 162
8.17.11 SCOTCH.meshGeomLoadHabo 162
8.17.12SCOTCH.meshGeomLoadScot 163
8.17.13 SCOTCH.meshGeomSaveScot 164
Other data structure handling routines 164
8.18.1 SCOTCHmMApPAlloC . . . v v v v v vt it e e e e 164
8.18.2 SCOTCH.mapSizeof i .. 165
8.18.3 SCOTCH_orderBAlloC . . v v v v v v v i it e e e e 165
8.18.4 SCOTCH_orderSizeof 165
Error handling routineso oL 166
8.19.1 SCOTCH_errorPrint 166
8.19.2 SCOTCH_errorPrintW 166
8.19.3 SCOTCH_errorProg« . v v v v v v, 167
Random generator handling 167
8.20.1 SCOTCH_randomPrOC . . .« « v v v v v v e et e e e e e 167
8.20.2 SCOTCH_randomReset v v v v v v ... 168
8.20.3 SCOTCH_-randomSeed« . o v v v v v v v v . 168
8.20.4 SCOTCH_-randomVal 169
Context handling routines 169
8.21.1 SCOTCH_contextInit 169
8.21.2 SCOTCH_contextExit 170
8.21.3 SCOTCH_contextOptionGetNum 171
8.21.4 SCOTCH_contextOptionSetNum 171

9

8.21.5 SCOTCH_contextRandomClone
8.21.6 SCOTCH_contextRandomReset
8.21.7 SCOTCH_contextRandomSeed
8.21.8 SCOTCH_contextSizeof
8.21.9 SCOTCH._contextThreadImportl
8.21.10 SCOTCH_contextThreadImport2
8.21.11 SCOTCH_contextThreadSpawn
8.21.12SCOTCH_contextBindGraph
8.21.13SCOTCH_contextBindMesh
8.22 Memory management
8.22.1 SCOTCHMEMCUY . .+ « v v v v e e e e e e e e e e e e
8.22.2 SCOTCHMEMETYEE . . v v v v v v e et e e e e e e
8.22.3 SCOTCHMEMMAX + v v v v v v v e e e e e e e e e e e e
8.23 Miscellaneous routines L
8.23.1 SCOTCH.numSizeof
8.23.2 SCOTCH.VErsion v v v v v v v v iiie e
8.24 MEIS compatibility library
8.24.1 METIS EAgeND« o v i v v ittt e e e
8.24.2 METIS MeshToDual v v v v v v v ...
824.3 METISNoOAEND v v v v v e e e e e e e e e e e e e
8.24.4 METISNodeWND v v v vt i i e e e e e e
8.24.5 METIS_PartGraphKway« . o v v v v ...
8.24.6 METIS_PartGraphRecursive
8.24.7 METIS PartGraphVKway
8.24.8 METIS_PartMeshDual
8.24.9 METIS_SetDefaultOptions

Installation

9.1 Threadissues
9.2 File compressionissues
9.3 Machine word sizeissues

10 Examples

11 Adding new features to Scotch

1

11.1 Graphsand meshes
11.2 Methods and partitiondata
11.3 Adding a new method to SCOTCH
11.4 Licensing of new methods and of derived works

Introduction

1.1 Static mapping

188
188
188
189

189

The efficient execution of a parallel program on a parallel machine requires that
the communicating processes of the program be assigned to the processors of the
machine so as to minimize its overall running time. When processes have a lim-
ited duration and their logical dependencies are accounted for, this optimization
problem is referred to as scheduling. When processes are assumed to coexist simul-
taneously for the entire duration of the program, it is referred to as mapping. It

amounts to balancing the computational weight of the processes among the proces-
sors of the machine, while reducing the cost of communication by keeping intensively
inter-communicating processes on nearby processors. In most cases, the underlying
computational structure of the parallel programs to map can be conveniently mod-
eled as a graph in which vertices correspond to processes that handle distributed
pieces of data, and edges reflect data dependencies. The mapping problem can then
be addressed by assigning processor labels to the vertices of the graph, so that all
processes assigned to some processor are loaded and run on it. In a SPMD con-
text, this is equivalent to the distribution across processors of the data structures
of parallel programs; in this case, all pieces of data assigned to some processor are
handled by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the program.
Static mapping is NP-complete in the general case [15]. Therefore, many studies
have been carried out in order to find sub-optimal solutions in reasonable time,
including the development of specific algorithms for common topologies such as the
hypercube [12, 23]. When the target machine is assumed to have a communication
network in the shape of a complete graph, the static mapping problem turns into the
partitioning problem, which has also been intensely studied [5, 24, 33, 35, 52]. How-
ever, when mapping onto parallel machines the communication network of which is
not a bus, not accounting for the topology of the target machine usually leads to
worse running times, because simple cut minimization can induce more expensive
long-distance communication [23, 60].

1.2 Sparse matrix ordering

Many scientific and engineering problems can be modeled by sparse linear systems,
which are solved either by iterative or direct methods. To achieve efficiency with
direct methods, one must minimize the fill-in induced by factorization. This fill-in
is a direct consequence of the order in which the unknowns of the linear system are
numbered, and its effects are critical both in terms of memory and computation
costs.

An efficient way to compute fill reducing orderings of symmetric sparse matrices
is to use recursive nested dissection [19]. It amounts to computing a vertex set S
that separates the graph into two parts A and B, ordering .S with the highest indices
that are still available, and proceeding recursively on parts A and B until their sizes
become smaller than some threshold value. This ordering guarantees that, at each
step, no non-zero term can appear in the factorization process between unknowns
of A and unknowns of B.

The main issue of the nested dissection ordering algorithm is thus to find small
vertex separators that balance the remaining subgraphs as evenly as possible, in
order to minimize fill-in and to increase concurrency in the factorization process.

1.3 Contents of this document

This document describes the capabilities and operations of SCOTCH, a software
package devoted to static mapping, graph and mesh partitioning, and sparse matrix
block ordering. ScOTCH allows the user to map efficiently any kind of weighted
process graph onto any kind of weighted architecture graph, and provides high-
quality block orderings of sparse matrices. The rest of this manual is organized
as follows. Section 2 presents the goals of the SCOTCH project. Sections 3 and 4

outline the most important aspects of the mapping and ordering algorithms that
it implements, respectively. Section 5 summarizes the most important changes
between version 5.0 and previous versions. Section 6 defines the formats of the files
used in SCOTCH, section 7 describes the programs of the SCoTCH distribution, and
section 8 defines the interface and operations of the LIBSCOTCH library. Section 9
explains how to obtain and install the SCOTCH distribution. Finally, some practical
examples are given in section 10, and instructions on how to implement new methods
in the LIBSCOTCH library are provided in section 11.

2 The Scotch project

2.1 Description

SCOTCH is a project carried out at the Laboratoire Bordelais de Recherche en In-
formatique (LaBRI) of the Université de Bordeaux and within the Tadaam team-
project of INRIA Bordeaux Sud-Ouest. Its goal is to study the application of graph
theory to scientific computing.

It focused first on static mapping, and has resulted in the development of the
Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of
several graph bipartitioning heuristics [43], all of which have been implemented in
the SCOTCH software package [47]. Then, it focused on the computation of high-
quality vertex separators for the ordering of sparse matrices by nested dissection,
by extending the work that has been done on graph partitioning in the context
of static mapping [48, 49]. The ordering capabilities of SCOTCH have then been
extended to native mesh structures, thanks to hypergraph partitioning algorithms.
Diffusion-based graph partitioning methods have also been added [9, 44].

Version 5.0 of SCOTCH was the first one to comprise parallel graph ordering
routines. The parallel features of SCOTCH are referred to as PT-ScoTcH (“Parallel
Threaded ScoTcH”). While both packages share a significant amount of code,
because PT-ScoTCH transfers control to the sequential routines of the LIBSCOTCH
library when the subgraphs on which it operates are located on a single processor,
the two sets of routines have a distinct user’s manual. Readers interested in the
parallel features of SCOTCH should refer to the PT-ScoTcH 7.0 User’s Guide [45].

Version 6.0 of SCOTCH is oriented towards the development of new features,
namely graph repartitioning and remapping [14]. A whole set of direct k-way graph
partitioning and mapping algorithms has also been implemented. Also, new target
architectures have been created, to allow SCOTCH to map efficiently onto parts of
regular target architectures [50], as it is the case when considering a potentially
non-connected partition of a big machine, as provided by a batch scheduler.

2.2 Availability

Starting from version 4.0, which has been developed at INRIA within the ScAlAp-
plix project, SCOTCH is available under a dual licensing basis. On the one hand, it
is downloadable from the SCOTCH web page as free/libre software, to all interested
parties willing to use it as a library or to contribute to it as a testbed for new
partitioning and ordering methods. On the other hand, it can also be distributed,
under other types of licenses and conditions, to parties willing to embed it tightly
into closed, proprietary software.

The free/libre software license under which ScoTcH 7.0 is distributed is
the CeCILL-C license [7], which has basically the same features as the GNU
LGPL (“Lesser General Public License”): ability to link the code as a library
to any free/libre or even proprietary software, ability to modify the code and to
redistribute these modifications. Version 4.0 of ScorcH was distributed under the
LGPL itself.

Please refer to section 9 to see how to obtain the free/libre distribution of
ScoTcCH.

3 Static mapping algorithms

The parallel program to be mapped onto the target architecture is modeled by a val-
uated unoriented graph S called source graph or process graph, the vertices of which
represent the processes of the parallel program, and the edges of which the commu-
nication channels between communicating processes. Vertex- and edge- valuations
associate with every vertex vg and every edge eg of S integer numbers wg(vg) and
wg(eg) which estimate the computation weight of the corresponding process and
the amount of communication to be transmitted on the channel, respectively.

The target machine onto which is mapped the parallel program is also modeled
by a valuated unoriented graph T called target graph or architecture graph. Vertices
vy and edges ep of T are assigned integer weights wr(vr) and wr(er), which
estimate the computational power of the corresponding processor and the cost of
traversal of the inter-processor link, respectively.

A mapping from S to T consists of two applications 7¢ , : V(S) — V(T') and
psa : E(S) — P(E(T)), where P(E(T)) denotes the set of all simple loopless
paths which can be built from E(T). 7s,(vs) = vr if process vg of S is mapped
onto processor vr of T, and ps r(es) = {er, €%, ..., en} if communication channel
es of S is routed through communication links ek, 2., ..., e of T. |psr(es)]
denotes the dilation of edge eg, that is, the number of edges of E(T') used to route
€s.

3.1 Cost function and performance criteria

The computation of efficient static mappings requires an a priori knowledge of the
dynamic behavior of the target machine with respect to the programs which are
run on it. This knowledge is synthesized in a cost function, the nature of which
determines the characteristics of the desired optimal mappings. The goal of our
mapping algorithm is to minimize some communication cost function, while keeping
the load balance within a specified tolerance. The communication cost function fo
that we have chosen is the sum, for all edges, of their dilation multiplied by their
weight:
fe(Tsrsps.r) = Z ws(es) |ps,r(es)] -

esEE(S)

This function, which has already been considered by several authors for hyper-
cube target topologies [12, 23, 27], has several interesting properties: it is easy
to compute, allows incremental updates performed by iterative algorithms, and its
minimization favors the mapping of intensively intercommunicating processes onto
nearby processors; regardless of the type of routing implemented on the target
machine (store-and-forward or cut-through), it models the traffic on the intercon-
nection network and thus the risk of congestion.

10

The strong positive correlation between values of this function and effective
execution times has been experimentally verified by Hammond [23] on the CM-2,
and by Hendrickson and Leland [28] on the nCUBE 2.

The quality of mappings is evaluated with respect to the criteria for quality that
we have chosen: the balance of the computation load across processors, and the
minimization of the inter-processor communication cost modeled by function fe.
These criteria lead to the definition of several parameters, which are described
below.

For load balance, one can define fipqp, the average load per computational
power unit (which does not depend on the mapping), and d,,4p, the load imbalance
ratio, as

>, ws(vs)

def VsEV(S)

= —— d
Hmap Z 'LUT(UT) an
’UTEV(T)

Z w 11; Z wS(”S) — Hma
vreV(T) r(vr) vs € V(S) "
5 def 7s,7(vs) = vr
e > ws(vs)
stV(S)

However, since the maximum load imbalance ratio is provided by the user in input
of the mapping, the information given by these parameters is of little interest, since
what matters is the minimization of the communication cost function under this
load balance constraint.

For communication, the straightforward parameter to consider is fo. It can be
normalized as fic;p, the average edge expansion, which can be compared to fi4:,
the average edge dilation; these are defined as

> lpsr(es)l

H = —fc and Kdit aot €5EP(S)
“p > ws(es) ' |E(S)]
es€E(S)

dexp = 'I;fdgif is smaller than 1 when the mapper succeeds in putting heavily inter-

communicating processes closer to each other than it does for lightly communicating
processes; they are equal if all edges have same weight.

3.2 The Dual Recursive Bipartitioning algorithm

This mapping algorithm, which is the primary way to compute initial static map-
pings, uses a divide and conquer approach to recursively allocate subsets of processes
to subsets of processors [43, 46]. It starts by considering a set of processors, also
called domain, containing all the processors of the target machine, and with which
is associated the set of all the processes to map. At each step, the algorithm bipar-
titions a yet unprocessed domain into two disjoint subdomains, and calls a graph
bipartitioning algorithm to split the subset of processes associated with the domain
across the two subdomains, as sketched in the following.

mapping (D, P)

Set_Of_Processors D;

Set_Of_Processes P;

{

Set_Of_Processors DO, DI1;
Set_Of_Processes PO, P1;

11

if (|P| == 0) return; /* If nothing to do. */

if (ID| == 1) { /+ If one processor in D x/
result (D, P); /* P is mapped onto it. */
return;

}

(DO, D1) = processor_bipartition (D);

(PO, Pl) = process_bipartition (P, DO, DI1);

mapping (DO, PO); /* Perform recursion. */

mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of the
process graph. As bipartitionings are performed, the subdomain sizes decrease, up
to give a complete mapping when all subdomains are of size one.

The above algorithm lies on the ability to define five main objects:

e a domain structure, which represents a set of processors in the target archi-
tecture;

e a domain bipartitioning function, which, given a domain, bipartitions it in two
disjoint subdomains;

e a domain distance function, which gives, in the target graph, a measure of the
distance between two disjoint domains. Since domains may not be convex nor
connected, this distance may be estimated. However, it must respect certain
homogeneity properties, such as giving more accurate results as domain sizes
decrease [46, 50]. The domain distance function is used by the graph biparti-
tioning algorithms to compute the communication function to minimize, since
it allows the mapper to estimate the dilation of the edges that link vertices
which belong to different domains. Using such a distance function amounts
to considering that all routings will use shortest paths on the target architec-
ture, which is how most parallel machines actually do. We have thus chosen
that our program would not provide routings for the communication channels,
leaving their handling to the communication system of the target machine;

e a process subgraph structure, which represents the subgraph induced by a
subset of the vertex set of the original source graph;

e a process subgraph bipartitioning function, which bipartitions subgraphs in
two disjoint pieces to be mapped onto the two subdomains computed by the
domain bipartitioning function.

All these routines are seen as black boxes by the mapping program, which can thus
accept any kind of target architecture and process bipartitioning functions.

3.2.1 Partial cost function

The production of efficient complete mappings requires that all graph bipartition-
ings favor the criteria that we have chosen. Therefore, the bipartitioning of a
subgraph S’ of S should maintain load balance within the user-specified tolerance,
and minimize the partial communication cost function f(, defined as

fé‘(Ts,Tvps,T)d;f Z ws({v,v'}) |Ps,T({UvU/})|)

v e V(S
{v,v'} € E(S)

12

which accounts for the dilation of edges internal to subgraph S’ as well as for the
one of edges which belong to the cocycle of S/, as shown in Figure 1. Taking into
account the partial mapping results issued by previous bipartitionings makes it pos-
sible to avoid local choices that might prove globally bad, as explained below. This
amounts to incorporating additional constraints to the standard graph bipartition-
ing problem, turning it into a more general optimization problem termed skewed
graph partitioning by some authors [29].

Do Dy

a. Initial position. b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when
bipartitioning the subgraph associated with domain D between the two subdomains
Dy and Dy of D. Dotted edges are of dilation zero, their two ends being mapped
onto the same subdomain. Thin edges are cocycle edges.

3.2.2 Execution scheme

From an algorithmic point of view, our mapper behaves as a greedy algorithm, since
the mapping of a process to a subdomain is never reconsidered, and at each step
of which iterative algorithms can be applied. The double recursive call performed
at each step induces a recursion scheme in the shape of a binary tree, each vertex
of which corresponds to a bipartitioning job, that is, the bipartitioning of both a
domain and its associated subgraph.

In the case of depth-first sequencing, as written in the above sketch, biparti-
tioning jobs run in the left branches of the tree have no information on the dis-
tance between the vertices they handle and neighbor vertices to be processed in
the right branches. On the contrary, sequencing the jobs according to a by-level
(breadth-first) travel of the tree allows any bipartitioning job of a given level to
have information on the subdomains to which all the processes have been assigned
at the previous level. Thus, when deciding in which subdomain to put a given pro-
cess, a bipartitioning job can account for the communication costs induced by its
neighbor processes, whether they are handled by the job itself or not, since it can
estimate in f{, the dilation of the corresponding edges. This results in an interesting
feedback effect: once an edge has been kept in a cut between two subdomains, the
distance between its end vertices will be accounted for in the partial communication
cost function to be minimized, and following jobs will be more likely to keep these
vertices close to each other, as illustrated in Figure 2. The relative efficiency of
depth-first and breadth-first sequencing schemes with respect to the structure of
the source and target graphs is discussed in [46].

13

CL1x CL1 . cL1

cL2
a. Depth-first sequencing. b. Breadth-first sequencing.

Figure 2: Influence of depth-first and breadth-first sequencings on the bipartitioning
of a domain D belonging to the leftmost branch of the bipartitioning tree. With
breadth-first sequencing, the partial mapping data regarding vertices belonging to
the right branches of the bipartitioning tree are more accurate (C.L. stands for “Cut
Level”).

3.2.3 Clustering by mapping onto variable-sized architectures

Several constrained graph partitioning problems can be modeled as mapping the
problem graph onto a target architecture, the number of vertices and topology of
which depend dynamically on the structure of the subgraphs to bipartition at each
step.

Variable-sized architectures are supported by the DRB algorithm in the follow-
ing way: at the end of each bipartitioning step, if any of the variable subdomains
is empty (that is, all vertices of the subgraph are mapped only to one of the sub-
domains), then the DRB process stops for both subdomains, and all of the vertices
are assigned to their parent subdomain; else, if a variable subdomain has only one
vertex mapped onto it, the DRB process stops for this subdomain, and the vertex
is assigned to it.

The moment when to stop the DRB process for a specific subgraph can be
controlled by defining a bipartitioning strategy that checks the validity of a criterion
at each bipartitioning step (see for instance Section 8.16.2), and maps all of the
subgraph vertices to one of the subdomains when it becomes false.

3.3 Static mapping methods

The core of our static mapping software uses graph mapping methods as black
boxes. It maintains an internal image of the current mapping, which records the
target vertex index onto which each of the source graph vertices is mapped. It is
therefore possible to apply several mapping methods in sequence, such that the first
method computes an initial mapping to be further refined by the following methods,
thus enabling us to define static mapping strategies. The currently implemented
static mapping methods are listed below.

Multilevel
This framework, which has been studied by several authors [5, 25, 33] and
should be considered as a strategy rather than as a method since it uses other
methods as parameters, repeatedly reduces the size of the graph to map by
finding matchings that collapse vertices and edges, computes a mapping of the

14

coarsest graph obtained, and prolongs the result back to the original graph,
as shown in Figure 3. The multilevel method, when used in conjunction with

Refined partition
Prolonged partition

-,

Uncoarsening
phase

Initial partitioning

Figure 3: The multilevel partitioning process. In the uncoarsening phase, the light
and bold lines represent for each level the prolonged partition obtained from the
coarser graph, and the partition obtained after refinement, respectively.

some local optimization methods to refine the projected partitions at every
level, usually leads to a significant improvement in quality with respect to
methods operating only on the finest graph. By coarsening the graphs, the
multilevel algorithm broadens the scope of local optimization algorithms: it
makes possible for them to account for topological structures of the original
graph that would else be of a too high level for them to be encompassed in
their local optimization process.

Band

Like the multilevel method above, the band method is a framework, in the
sense that it does not itself compute partitions, but rather helps other parti-
tioning algorithms perform better. It is a refinement algorithm which, from
a given initial partition, extracts a band graph of given width (which only
contains graph vertices that are at most at this distance from the frontiers of
the parts), calls a partitioning strategy on this band graph, and projects back
the refined partition on the original graph. This method was designed to be
able to use expensive partitioning heuristics, such as genetic algorithms, on
large graphs, as it dramatically reduces the problem space by several orders
of magnitude. However, it was found that, in a multilevel context, it also im-
proves partition quality, by coercing partitions in a problem space that derives
from the one which was globally defined at the coarsest level, thus preventing
local optimization refinement algorithms to be trapped in local optima of the
finer graphs [9].

Fiduccia-Mattheyses
This is a direct k-way version of the traditional Fiduccia-Mattheyses heuristics
used for computing bipartitions, that will be presented in the next section.
By default, boundary vertices can only be moved to parts to which at least
one of their neighbors belong.

Diffusion
This is also a k-way version of an algorithm that has been first used in the
context of bipartitioning, and which will be presented in the next section. The

15

k-way version differs from the latter as it diffuses k sorts of liquids rather than
just two as in the bipartitioning case.

Exactifier

This greedy algorithm refines its input mapping so as to reduce load imbal-
ance as much as possible. Since this method does not consider load balance
minimization, its use should be restricted to cases where achieving load bal-
ance is critical and where recursive bipartitioning may fail to achieve it. It
is especially the case when vertex loads are very irregular: some subdomains
may receive only a few heavy vertices, yielding load balance artifacts when no
light vertices are locally available to compensate.

Graph vertices are sorted by decreasing weights, and considered in turn. If the
current vertex can fit in its initial part without causing imbalance by excess,
it is added to it, and the algorithm goes on. Else, a candidate part is found
by exploring other subdomains in an order based on an implicit recursive
bipartitioning of the architecture graph. Consequently, such vertices will be
placed in subdomains that tend to be as close as possible to the original
location of the vertex. This method is most likely to result in disconnected
parts.

Dual recursive bipartitioning
This algorithm implements the dual recursive bipartitioning algorithm that
has been presented in Section 3.2. The DRB algorithms can be used either
directly on the original graph to partition, or on the coarsest graph yielded by
the direct k-way multilevel framework. It uses graph bipartitioning methods,
described below, to compute its bipartitions.

3.4 Graph bipartitioning methods

The core of our dual recursive bipartitioning mapping algorithm uses process graph
bipartitioning methods as black boxes. It allows the mapper to run any type of
graph bipartitioning method compatible with our criteria for quality. Bipartitioning
jobs maintain an internal image of the current bipartition, indicating for every vertex
of the job whether it is currently assigned to the first or to the second subdomain.
It is therefore possible to apply several different methods in sequence, each one
starting from the result of the previous one, and to select the methods with respect
to the job characteristics, thus enabling us to define graph bipartitioning strategies.
The currently implemented graph bipartitioning methods are listed below.

Diffusion

This global optimization method, presented in [44], flows two kinds of antag-
onistic liquids, scotch and anti-scotch, from two source vertices, and sets the
new frontier as the limit between vertices which contain scotch and the ones
which contain anti-scotch. In order to add load-balancing constraints to the
algorithm, a constant amount of liquid disappears from every vertex per unit
of time, so that no domain can spread across more than half of the vertices.
Because selecting the source vertices is essential to the obtainment of use-
ful results, this method has been hard-coded so that the two source vertices
are the two vertices of highest indices, since in the band method these are
the anchor vertices which represent all of the removed vertices of each part.
Therefore, this method must be used on band graphs only, or on specifically
crafted graphs.

16

Exactifier

This greedy algorithm refines the current partition so as to reduce load imbal-
ance as much as possible, while keeping the value of the communication cost
function as small as possible. The vertex set is scanned in order of decreasing
vertex weights, and vertices are moved from one subdomain to the other if
doing so reduces load imbalance. When several vertices have same weight,
the vertex whose swap decreases most the communication cost function is se-
lected first. This method is used in post-processing of other methods when
load balance is mandatory. For weighted graphs, the strict enforcement of
load balance may cause the swapping of isolated vertices of small weight, thus
greatly increasing the cut. Therefore, great care should be taken when using
this method if connectivity or cut minimization are mandatory.

Fiduccia-Mattheyses

The Fiduccia-Mattheyses heuristics [13] is an almost-linear improvement of
the famous Kernighan-Lin algorithm [37]. It tries to improve the bipartition
that is input to it by incrementally moving vertices between the subsets of
the partition, as long as it can find sequences of moves that lower its commu-
nication cost. By considering sequences of moves instead of single swaps, the
algorithm allows hill-climbing from local minima of the cost function. As an
extension to the original Fiduccia-Mattheyses algorithm, we have developed
new data structures, based on logarithmic indexings of arrays, that allow us
to handle weighted graphs while preserving the almost-linearity in time of the
algorithm [46].

As several authors quoted before [26, 34], the Fiduccia-Mattheyses algorithm
gives better results when trying to optimize a good starting partition. There-
fore, it should not be used on its own, but rather after greedy starting methods
such as the Gibbs-Poole-Stockmeyer or the greedy graph growing methods.

Gibbs-Poole-Stockmeyer

This greedy bipartitioning method derives from an algorithm proposed by
Gibbs, Poole, and Stockmeyer to minimize the dilation of graph orderings,
that is, the maximum absolute value of the difference between the numbers of
neighbor vertices [20]. The graph is sliced by using a breadth-first spanning
tree rooted at a randomly chosen vertex, and this process is iterated by se-
lecting a new root vertex within the last layer as long as the number of layers
increases. Then, starting from the current root vertex, vertices are assigned
layer after layer to the first subdomain, until half of the total weight has been
processed. Remaining vertices are then allocated to the second subdomain.

As for the original Gibbs, Poole, and Stockmeyer algorithm, it is assumed that
the maximization of the number of layers results in the minimization of the
sizes —and therefore of the cocycles— of the layers. This property has already
been used by George and Liu to reorder sparse linear systems using the nested
dissection method [19], and by Simon in [58].

Greedy graph growing
This greedy algorithm, which has been proposed by Karypis and Kumar [33],
belongs to the GRASP (“Greedy Randomized Adaptive Search Procedure”)
class [39]. Tt consists in selecting an initial vertex at random, and repeatedly
adding vertices to this growing subset, such that each added vertex results
in the smallest increase in the communication cost function. This process,
which stops when load balance is achieved, is repeated several times in order

17

to explore (mostly in a gradient-like fashion) different areas of the solution
space, and the best partition found is kept.

Multilevel
This is a graph bipartition-oriented version of the static mapping multilevel
method described in the previous section, page 14.

4 Sparse matrix ordering algorithms

When solving large sparse linear systems of the form Ax = b, it is common to
precede the numerical factorization by a symmetric reordering. This reordering is
chosen in such a way that pivoting down the diagonal in order on the resulting
permuted matrix PAPT produces much less fill-in and work than computing the
factors of A by pivoting down the diagonal in the original order (the fill-in is the
set of zero entries in A that become non-zero in the factored matrix).

4.1 Performance criteria

The quality of orderings is evaluated with respect to several criteria. The first
one, NNZ, is the number of non-zero terms in the factored reordered matrix. The
second one, OPC, is the operation count, that is the number of arithmetic operations
required to factor the matrix. The operation count that we have considered takes
into consideration all operations (additions, subtractions, multiplications, divisions)
required by Cholesky factorization, except square roots; it is equal to) n?, where
n. is the number of non-zeros of column c of the factored matrix, diagonal included.
A third criterion for quality is the shape of the elimination tree; concurrency in
parallel solving is all the higher as the elimination tree is broad and short. To
measure its quality, several parameters can be defined: Amin, fmax, and h,yg denote
the minimum, maximum, and average heights of the tree', respectively, and Ay
is the variance, expressed as a percentage of haye. Since small separators result in
small chains in the elimination tree, h,ys should also indirectly reflect the quality
of separators.

4.2 Minimum Degree

The minimum degree algorithm [59] is a local heuristic that performs its pivot
selection by iteratively selecting from the graph a node of minimum degree.

The minimum degree algorithm is known to be a very fast and general purpose
algorithm, and has received much attention over the last three decades (see for
example [1, 18, 42]). However, the algorithm is intrinsically sequential, and very
little can be theoretically proved about its efficiency.

4.3 Nested dissection

The nested dissection algorithm [19] is a global, heuristic, recursive algorithm which
computes a vertex set S that separates the graph into two parts A and B, ordering
S with the highest remaining indices. It then proceeds recursively on parts A and B
until their sizes become smaller than some threshold value. This ordering guarantees
that, at each step, no non zero term can appear in the factorization process between
unknowns of A and unknowns of B.

1We do not consider as leaves the disconnected vertices that are present in some meshes, since
they do not participate in the solving process.

18

Many theoretical results have been carried out on nested dissection order-
ing [8, 41], and its divide and conquer nature makes it easily parallelizable. The
main issue of the nested dissection ordering algorithm is thus to find small vertex
separators that balance the remaining subgraphs as evenly as possible. Most often,
vertex separators are computed by using direct heuristics [30, 40], or from edge
separators [51, and included references| by minimum cover techniques [10, 32], but
other techniques such as spectral vertex partitioning have also been used [52].

Provided that good vertex separators are found, the nested dissection algorithm
produces orderings which, both in terms of fill-in and operation count, compare
favorably [21, 33, 48] to the ones obtained with the minimum degree algorithm [42].
Moreover, the elimination trees induced by nested dissection are broader, shorter,
and better balanced, and therefore exhibit much more concurrency in the context
of parallel Cholesky factorization [3, 16, 17, 21, 48, 56, and included references].

4.4 Hybridization

Due to their complementary nature, several schemes have been proposed to
hybridize the two methods [30, 36, 48]. However, to our knowledge, only loose
couplings have been achieved: incomplete nested dissection is performed on the
graph to order, and the resulting subgraphs are passed to some minimum degree
algorithm. This results in the fact that the minimum degree algorithm does not
have exact degree values for all of the boundary vertices of the subgraphs, leading
to a misbehavior of the vertex selection process.

Our ordering program implements a tight coupling of the nested dissection and
minimum degree algorithms, that allows each of them to take advantage of the infor-
mation computed by the other. First, the nested dissection algorithm provides exact
degree values for the boundary vertices of the subgraphs passed to the minimum
degree algorithm (called halo minimum degree since it has a partial visibility of the
neighborhood of the subgraph). Second, the minimum degree algorithm returns the
assembly tree that it computes for each subgraph, thus allowing for supervariable
amalgamation, in order to obtain column-blocks of a size suitable for BLAS3 block
computations.

As for our mapping program, it is possible to combine ordering methods into
ordering strategies, which allow the user to select the proper methods with respect
to the characteristics of the subgraphs.

The ordering program is completely parametrized by its ordering strategy. The
nested dissection method allows the user to take advantage of all of the graph
partitioning routines that have been developed in the earlier stages of the SCOTCH
project. Internal ordering strategies for the separators are relevant in the case of
sequential or parallel [22, 53, 54, 55] block solving, to select ordering algorithms
that minimize the number of extra-diagonal blocks [8], thus allowing for efficient
use of BLAS3 primitives, and to reduce inter-processor communication.

4.5 Ordering methods

The core of our ordering algorithm uses graph ordering methods as black boxes,
which allows the orderer to run any type of ordering method. In addition to yielding
orderings of the subgraphs that are passed to them, these methods may compute
column block partitions of the subgraphs, that are recorded in a separate tree
structure. The currently implemented graph ordering methods are listed below.

19

Halo approximate minimum degree

The halo approximate minimum degree method [49] is an improvement of
the approximate minimum degree [1] algorithm, suited for use on subgraphs
produced by nested dissection methods. Its interest compared to classical min-
imum degree algorithms is that boundary vertices are processed using their
real degree in the global graph rather than their (much smaller) degree in the
subgraph, resulting in smaller fill-in and operation count. This method also
implements amalgamation techniques that result in efficient block computa-
tions in the factoring and the solving processes.

Halo approximate minimum fill
The halo approximate minimum fill method is a variant of the halo approxi-
mate minimum degree algorithm, where the criterion to select the next vertex
to permute is not based on its current estimated degree but on the minimiza-
tion of the induced fill.

Graph compression
The graph compression method [2] merges cliques of vertices into single nodes,
so as to speed-up the ordering of the compressed graph. It also results in some
improvement of the quality of separators, especially for stiffness matrices.

Gibbs-Poole-Stockmeyer
This method is mainly used on separators to reduce the number and extent
of extra-diagonal blocks.

Simple method
Vertices are ordered consecutively, in the same order as they are stored in the
graph. This is the fastest method to use on separators when the shape of
extra-diagonal structures is not a concern.

Nested dissection
Incomplete nested dissection method. Separators are computed recursively on
subgraphs, and specific ordering methods are applied to the separators and
to the resulting subgraphs (see sections 4.3 and 4.4).

Disconnected subgraph detection
This method may be used as a pre-processing step so as to apply the same
ordering strategy on each of the disconnected components of a graph. While
finding the connected components of a graph is expensive, it may bring an
improvement on graph ordering quality in some cases.

4.6 Graph separation methods

The core of our incomplete nested dissection algorithm uses graph separation
methods as black boxes. It allows the orderer to run any type of graph separation
method compatible with our criteria for quality, that is, reducing the size of the
vertex separator while maintaining the loads of the separated parts within some
user-specified tolerance. Separation jobs maintain an internal image of the current
vertex separator, indicating for every vertex of the job whether it is currently
assigned to one of the two parts, or to the separator. It is therefore possible to
apply several different methods in sequence, each one starting from the result of
the previous one, and to select the methods with respect to the job characteristics,
thus enabling the definition of separation strategies.

20

The currently implemented graph separation methods are listed below.

Fiduccia-Mattheyses
This is a vertex-oriented version of the original, edge-oriented, Fiduccia-
Mattheyses heuristics described in page 17.

Greedy graph growing
This is a vertex-oriented version of the edge-oriented greedy graph growing
algorithm described in page 17.

Multilevel
This is a vertex-oriented version of the edge-oriented multilevel algorithm
described in page 14.

Thinner
This greedy algorithm refines the current separator by removing all of the
exceeding vertices, that is, vertices that do not have neighbors in both parts.
It is provided as a simple gradient refinement algorithm for the multilevel
method, and is clearly outperformed by the Fiduccia-Mattheyses algorithm.

Vertex cover

This algorithm computes a vertex separator by first computing an edge sepa-
rator, that is, a bipartition of the graph, and then turning it into a vertex sep-
arator by using the method proposed by Pothen and Fang [51]. This method
requires the computation of maximal matchings in the bipartite graphs as-
sociated with the edge cuts, which are built using Duff’s variant [10] of the
Hopcroft and Karp algorithm [32]. Edge separators are computed by using a
bipartitioning strategy, which can use any of the graph bipartitioning methods
described in section 3.4, page 16.

5 Updates

5.1 Changes in version 7.0 from version 6.1

Thread management in SCOTCH is now dynamic. This allows the user to control
dynamically the number of threads that are used by the threaded algorithms of the
LIBSCOTCH library and, consequently, by the SCOTCH standalone programs that
call them. Users can also control concurrency by using SCOTCH_Context objects.
These objects define user-configurable execution contexts, in which LIBSCOTCH li-
brary routines can be executed independently from others; see Section 8.21, page 169
for further information.

Execution contexts also comprise option values, which dynamically determine
the behavior of the SCOTCH routines. In previous versions, such behavior was
controlled at compile-time by flags COMMON_RANDOM_FIXED_SEED and SCOTCH-
DETERMINISTIC. It is now possible to define these flags dynamically, using the
relevant option setting routine (see Section 8.21.4).

Support for CMake has been added.
A new, faster, pseudo-random number generator has been implemented.
The y cordinate of the grid geometry files provided by the gmk_m* programs has

been set to the ascending order. Use option —y to restore the previous behavior of
descending order.

21

5.2 Changes in version 6.1 from version 6.0

The k-way refinement routine of the module that computes graph partitions with
overlap has been completely rewritten.

The halo minimum degree and halo minimum fill algorithms now take into
account, for computing vertex degrees, the vertex weights attached to node
vertices. These weights may represent the number of degrees of freedom associ-
ated with a vertex during subsequent matrix computations. They can result from
a graph compression process, such as the one implemented in SCOTCH (see page 75).

The program gout can now output VTK files.

5.3 Changes in version 6.0 from version 5.1

The new sub abstract target architecture allows one to map a graph onto a subset
of any given target architecture (including another sub architecture). This feature
is meant to perform mappings onto potentially disconnected subsets of a parallel
machine, e.g. the set of nodes assigned by a batch scheduler; see Section 8.5.10,
page 90 for further information.

Also, in order to allow decomposition-defined architectures to scale-up to the
sizes of modern machines, a new version of the deco architecture, called deco 2,
has been designed. This target architecture can be created using the SCOTCH_arch
Build2 routine; see Section 8.5.2, page 85 for further information. For further
information on the rationale and implementation of these two features, please refer
to [50].

Also,a new labeled tree-leaf architecture has been created, for nodes that label
cores in non increasing order. See Section 6.4.2, page 28 for the description of the
ltleaf target architecture.

Direct k-way graph partitioning and static mapping methods are now avail-
able. They are less expensive than the classical dual recursive bipartitioning
scheme, and improve quality on average for numbers of parts above a few
hundreds. Another new method aims at reducing load imbalance in the case
of source graphs with highly irregular vertex weights; see Section 3.3, page 14.
Users willing to keep using the old recursive bipartitioning strategies of the
5.X branch can create default strategies with the SCOTCH_STRATRECURSIVE
flag set, in addition to other flags; see Section 8.3.1, page 64 for further information.

Graph repartitioning and static re-mapping features are now available; see
Sections 8.8.2 to 8.8.7, starting from page 113.

The clustering capabilities of SCOTCH can be used more easily from the
command line and library calls ; see Section 7.4.6 and Section 8.16.2.

A new set of routines has been created in order to compute vertex-separated,
k-way partitions, that balance the loads of the parts and of the separator vertices

that surround them; see Sections 8.3.4 and 8.8.5.

A method for computing independently orderings on connected components
of a graph is now available; see Section 8.3.5, page 74, and the SCOTCH_STRAT

22

DISCONNECTED flag in Section 8.3.1, page 64.

Key algorithms are now multi-threaded. See the installation file INSTALL. txt
in the main directory for instructions on how to compile ScoTcH with thread
support enabled.

Memory footprint measurement routines are now available to users; see
Section 8.23, page 180.

The MEIIS compatibility library now provides optionally version 5 of the MEITS
API, in addition to version 3. In the 6.0 branch of SCOTCH, version 3 of the API
will remain the default. To expose version 5 of the MEIIS API, SCOTCH must be
compiled with flag SCOTCH.METIS_VERSION=5 set. In further branches, version 5
of the API may become the default, requiring the SCOTCH.METIS_VERSION=3 flag
to be set to expose version 3 of the MEITS API.

5.4 Changes in version 5.1 from version 5.0

A new integer index type has been created in the Fortran interface, to address
array indices larger than the maximum value which can be stored in a regular
integer. Please refer to Section 9.3 for more information.

A new set of routines has been designed, to ease the use of the LIBSCOTCH as
a dynamic library. The SCOTCH_version routine returns the version, release and
patch level numbers of the library being used. The SCOTCH_xA11oc routines, which
are only available in the C interface at the time being, dynamically allocate storage
space for the opaque API SCOTCH structures, which frees application programs from
the need to be systematically recompiled because of possible changes of SCOTCH
structure sizes.

6 Files and data structures

For the sake of portability, readability, and reduction of storage space, all the data
files shared by the different programs of the SCOTCH project are coded in plain
ASCII text exclusively. Although we may speak of “lines” when describing file for-
mats, text-formatting characters such as newlines or tabulations are not mandatory,
and are not taken into account when files are read. They are only used to provide
better readability and understanding. Whenever numbers are used to label objects,
and unless explicitely stated, numberings always start from zero, not one.

6.1 Graph files

Graph files, which usually end in “.grf” or “.src”, describe valuated graphs,
which can be valuated process graphs to be mapped onto target architectures, or
graphs representing the adjacency structures of matrices to order.

Graphs are represented by means of adjacency lists: the definition of each
vertex is accompanied by the list of all of its neighbors, i.e. all of its adjacent arcs.
Therefore, the overall number of edge data is twice the number of edges.

¢ “

Since version 3.3 has been introduced a new file format, referred to as the “new-
style” file format, which replaces the previous, “old-style”, file format. The two

23

advantages of the new-style format over its predecessor are its greater compacity,
which results in shorter I/O times, and its ability to handle easily graphs output
by C or by Fortran programs.

Starting from version 4.0, only the new format is supported. To convert
remaining old-style graph files into new-style graph files, one should get version 3.4
of the SCOTCH distribution, which comprises the scv file converter, and use it to
produce new-style SCOTCH graph files from the old-style SCOTCH graph files which
it is able to read. See section 7.4.5 for a description of gcv, formerly called scv.

The first line of a graph file holds the graph file version number, which is cur-
rently 0. The second line holds the number of vertices of the graph (referred to as
vertnbr in LIBSCOTCH; see for instance Figure 17, page 59, for a detailed exam-
ple), followed by its number of arcs (unappropriately called edgenbr, as it is in
fact equal to twice the actual number of edges). The third line holds two figures:
the graph base index value (baseval), and a numeric flag.

The graph base index value records the value of the starting index used to
describe the graph; it is usually 0 when the graph has been output by C programs,
and 1 for Fortran programs. Its purpose is to ease the manipulation of graphs within
each of these two environments, while providing compatibility between them.

The numeric flag, similar to the one used by the CHACO graph format [26], is
made of three decimal digits. A non-zero value in the units indicates that vertex
weights are provided. A non-zero value in the tenths indicates that edge weights
are provided. A non-zero value in the hundredths indicates that vertex labels are
provided; if it is the case, vertices can be stored in any order in the file; else, natural
order is assumed, starting from the graph base index.

This header data is then followed by as many lines as there are vertices in the
graph, that is, vertnbr lines. Each of these lines begins with the vertex label,
if necessary, the vertex load, if necessary, and the vertex degree, followed by the
description of the arcs. An arc is defined by the load of the edge, if necessary, and
by the label of its other end vertex. The arcs of a given vertex can be provided
in any order in its neighbor list. If vertex labels are provided, vertices can also be
stored in any order in the file.

Figure 4 shows the contents of a graph file modeling a cube with unity vertex
and edge weights and base 0.

0

8 24

0 000

3 4 2 1
3 5 3 0
3 6 0 3
3 7 1 2
3 0 6 5
3 1 7 4
3 2 4 7
3 3 5 6

Figure 4: Graph file representing a cube.

6.2 Mesh files

Mesh files, which usually end in “.msh”, describe valuated meshes, made of ele-

ments and nodes, the elements of which can be mapped onto target architectures,

24

and the nodes of which can be reordered.

Meshes are bipartite graphs, in the sense that every element is connected to the
nodes that it comprises, and every node is connected to the elements to which it
belongs. No edge connects any two element vertices, nor any two node vertices.
One can also think of meshes as hypergraphs, such that nodes are the vertices
of the hypergraph and elements are hyper-edges which connect multiple nodes, or
reciprocally such that elements are the vertices of the hypergraph and nodes are
hyper-edges which connect multiple elements.

Since meshes are graphs, the structure of mesh files resembles very much the
one of graph files described above in section 6.1, and differs only by its header,
which indicates which of the vertices are node vertices and element vertices.

The first line of a mesh file holds the mesh file version number, which is cur-
rently 1. Graph and mesh version numbers will always differ, which enables appli-
cation programs to accept both file formats and adapt their behavior according to
the type of input data. The second line holds the number of elements of the mesh
(velmnbr), followed by its number of nodes (vnodnbr), and its overall number of
arcs (edgenbr, that is, twice the number of edges which connect elements to nodes
and vice-versa).

The third line holds three figures: the base index of the first element vertex in
memory (velmbas), the base index of the first node vertex in memory (vnodbas),
and a numeric flag.

The ScoTCH mesh file format requires that all nodes and all elements be as-
signed to contiguous ranges of indices. Therefore, either all element vertices are
defined before all node vertices, or all node vertices are defined before all element
vertices. The node and element base indices indicate at the same time whether
elements or nodes are put in the first place, as well as the value of the starting
index used to describe the graph. Indeed, if velmbas < vnodbas, then elements
have the smallest indices, velmbas is the base value of the underlying graph (that
is, baseval = velmbas), and velmbas + velmnbr = vnodbas holds. Con-
versely, if velmbas > vnodbas, then nodes have the smallest indices, vnodbas
is the base value of the underlying graph, (that is, baseval = vnodbas), and
vnodbas + vnodnbr = velmbas holds.

The numeric flag, similar to the one used by the CHACO graph format [26], is
made of three decimal digits. A non-zero value in the units indicates that vertex
weights are provided. A non-zero value in the tenths indicates that edge weights
are provided. A non-zero value in the hundredths indicates that vertex labels are
provided; if it is the case, and if velmbas < vnodbas (resp. velmbas > vnod-
bas), the velmnbr (resp. vnodnbr) first vertex lines are assumed to be element
(resp. node) vertices, irrespective of their vertex labels, and the vnodnbr (resp.
velmnbr) remaining vertex lines are assumed to be node (resp. element) ver-
tices; else, natural order is assumed, starting at the underlying graph base index
(baseval).

This header data is then followed by as many lines as there are node and element
vertices in the graph. These lines are similar to the ones of the graph format, except
that, in order to save disk space, the numberings of nodes and elements all start
from the same base value, that is, min(velmbas, vnodbas) (also called baseval,
like for regular graphs).

For example, Figure 5 shows the contents of the mesh file modeling three square
elements, with unity vertex and edge weights, elements defined before nodes, and
numbering of the underlying graph starting from 1. In memory, the three elements

25

are labeled from 1 to 3, and the eight nodes are labeled from 4 to 11. In the file,
the three elements are still labeled from 1 to 3, while the eight nodes are labeled
from 1 to 8.

When labels are used, elements and nodes may have similar labels, but not two
elements, nor two nodes, should have the same labels.

24
000
(=5 8 (=11 4 =7 3 (=%
(= 10) 2 (=5) 8 (=11) 1 (=9
(=8) 6 (=9 3 (=6 4 =7

ST R e N N e N N N L
NN WWERE R NN O JN S
=

Figure 5: Mesh file representing three square elements, with unity vertex and edge
weights. Elements are defined before nodes, and numbering of the underlying graph
starts from 1. The left part of the figure shows the mesh representation in memory,
with consecutive element and node indices. The right part of the figure shows
the contents of the file, with both element and node numberings starting from 1,
the minimum of the element and node base values. Corresponding node indices in
memory are shown in parentheses for the sake of comprehension.

6.3 Geometry files

“

Geometry files, which usually end in “.xyz”, hold the coordinates of the vertices
of their associated graph or mesh. These files are not used in the mapping process
itself, since only topological properties are taken into account then (mappings are
computed regardless of graph geometry). They are used by visualization programs
to compute graphical representations of mapping results.

The first string to appear in a geometry file codes for its type, or dimensionality.
It is “1” if the file contains unidimensional coordinates, “2” for bidimensional co-
ordinates, and “3” for tridimensional coordinates. It is followed by the number of
coordinate data stored in the file, which should be at least equal to the number of
vertices of the associated graph or mesh, and by that many coordinate lines. Each
coordinate line holds the label of the vertex, plus one, two or three real numbers
which are the (X), (X,Y), or (X,Y,Z), coordinates of the graph vertices, according
to the graph dimensionality.
Vertices can be stored in any order in the file. Moreover, a geometry file can have
more coordinate data than there are vertices in the associated graph or mesh file;
only coordinates the labels of which match labels of graph or mesh vertices will be
taken into account. This feature allows all subgraphs of a given graph or mesh to
share the same geometry file, provided that graph vertex labels remain unchanged.
For example, Figure 6 shows the contents of the 3D geometry file associated with

26

the graph of Figure 4.

3

8

0 0.0 0.0 0.0
1 0.0 0.0 1.0
2 0.0 1.0 0.0
3 0.0 1.0 1.0
4 1.0 0.0 0.0
5 1.0 0.0 1.0
6 1.0 1.0 0.0
7 1.0 1.0 1.0

Figure 6: Geometry file associated with the graph file of Figure 4.

6.4 Target files

Target files describe the architectures onto which source graphs are mapped. Instead
of containing the structure of the target graph itself, as source graph files do, target
files define how target graphs are bipartitioned and give the distances between all
pairs of vertices (that is, processors). Keeping the bipartitioning information within
target files avoids recomputing it every time a target architecture is used. We are
allowed to do so because, in our approach, the recursive bipartitioning of the target
graph is fully independent with respect to that of the source graph (however, the
opposite is false).

For space and time saving issues, some classical homogeneous architectures (2D
and 3D meshes and tori, hypercubes, complete graphs, etc.) have been algorithmi-
cally coded within the mapper itself by the means of built-in functions. Instead of
containing the whole graph decomposition data, their target files hold only a few
values, used as parameters by the built-in functions.

6.4.1 Decomposition-defined architecture files

Decomposition-defined architecture files are the way to describe irregular target
architectures that cannot be represented as algorithmically-coded architectures.

Two main file formats coexist: the “deco 0”7 and “deco 2” formats. “deco”
stands for “decomposition-defined architecture”, followed by the format number.
The “deco 1” format is a compiled form of the “deco 0” format, which we will
not describe here as it is not meant to be handled by users.

The “deco 0”7 header is followed by two integer numbers, which are the number
of processors and the largest terminal number used in the decomposition, respec-
tively. Two arrays follow. The first array has as many lines as there are processors.
Each of these lines holds three numbers: the processor label, the processor weight
(that is an estimation of its computational power), and its terminal number. The
terminal number associated with every processor is obtained by giving the initial
domain holding all the processors number 1, and by numbering the two subdomains
of a given domain of number 7 with numbers 2¢ and 2¢ + 1. The second array is
a lower triangular diagonal-less matrix that gives the distance between all pairs of
processors. This distance matrix, combined with the decomposition tree coded by
terminal numbers, allows the evaluation by averaging of the distance between all
pairs of domains. In order for the mapper to behave properly, distances between
processors must be strictly positive numbers. Therefore, null distances are not ac-
cepted. For instance, Figure 7 shows the contents of the architecture decomposition

27

file for UB(2,3), the binary de Bruijn graph of dimension 3, as computed by the
amk_grf program.

deco 0
8 15

14
13
11
12

e e

10

W N WERE NN J0yO b wh P O

I I
WN RN
[N
NN

N

Figure 7: Target decomposition file for UB(2,3). The terminal numbers associated
with every processor define a unique recursive bipartitioning of the target graph.

The “deco 2” format was created so as to represent bigger target architectures.
Indeed, the distance matrix of the “deco 0” format is quadratic in the number of
target vertices, which is not scalable and prevents users from representing target
architectures bigger than a few thousand vertices. In the “deco 2” architecture,
distances are computed using in a multilevel representation of the target graph, in
the form of a family of coarser graphs. Hence, the more distant the vertices are,
the coarsest is the graph to be used to estimate this distance [50]. The vertices and
edges of these graphs encode their respective cost of traversal, which becomes less
accurate as coarser graphs are used.

6.4.2 Algorithmically-coded architecture files

Almost all algorithmically-coded architectures are defined with unity edge and ver-
tex weights. They start with an abbreviation name of the architecture, followed by
parameters specific to the architecture. The available built-in architecture defini-
tions are listed below.

cmplt size
Defines a complete graph with size vertices. Its vertex labels are numbers
between 0 and size — 1.

cmpltw size loady loady ... loadg;,e_1
Defines a weighted complete graph with size vertices. Its vertex labels are
numbers between 0 and size — 1, and vertices are assigned integer weights in
the order in which these are provided.

hcub dim
Defines a binary hypercube of dimension dim. Graph vertices are numbered
according to the value of the binary representation of their coordinates in the
hypercube.

28

ltleaf levinbr sizevaly linkvaly ... sizevaljeyinpr—1 Uinkval epimpr—1
permnbr permuvaly ... permual ye,,npr—1
The 1tleaf (for “labeled tree-leaf”) architecture is an extended tree-leaf ar-
chitecture (tleaf, see below) which models target topologies where cores are
not labeled in increasing order.
The tree structure of the architecture is described just like for a regular t 1eaf
architecture. permnbr is the length of the permutation that is used to label
cores, followed by this number of permutation indices, ranging between 0 and
(permnbr — 1). Figure 8 presents an example of such an architecture.
The permutation array must be of a size that matches level boundaries. Al-
ternatively, a permutation of size 1, with only index 0 given, represents the
identity permutation. In this case, the regular tleaf architecture can be
used.
ltleaf

332102541
8 02461357

Figure 8: Labeled tree-leaf architecture with 3 levels, representing a system with 32
nodes of 2 quad-core processors. Inter-node communication costs 10, inter-processor
communication within the same node costs 5 and inter-core communication within
the same processor costs 1. Within a 8-core node, cores are labeled such that cores
0, 2, 4 and 6 are located on the first processor, while cores 1, 3, 5 and 7 are located
on the second processor.

mesh2D dimyx dimy
Defines a bidimensional array of dimyx columns by dimy rows. The vertex
with coordinates (posx, posy) has label posx + posy X dimx.

mesh3D dimyx dimy dimg
Defines a tridimensional array of dimyx columns by dimy rows by dimyz levels.
The vertex with coordinates (posx, posy , posz) has label posx + posy dimyx +

posz dimx dimy .
meshXD ndims dimg dimy ... dim,dims—1)
Generalization of the mesh2D and mesh3D architectures. Defines a
ndims-dimensional array of dimensions dimg, dimi ...dimpgims—1. The
vertex with coordinates (posg,posy,...,P0Spdims—1) has label posy +
ndims—1 d—1 .
e (posd | dzmd/).
sub termnbr termnumg termnumy ... termnumiermnbr—1 architecture

Defines a sub-architecture of another architecture. The sub-architecture
contains termnbr vertices, which have ranks termnumg, termnumq,
termnumermnbr—1 in the prescribed, original architecture. The original ar-
chitecture must comprise at least termnbr vertices, and thus cannot be a
variable-sized architecture. The order in which vertex numbers are provided
defines the part indices that will be used as output mapping data. For in-
stance, in the example shown in Figure 9, source vertices that are assigned to
vertex 3 of the sub-architecture are in fact assigned to vertex 5 of the original,
2D mesh architecture, according to its canonical numbering.

tleaf levinbr sizevaly linkvaly ... sizevaljepimpr—1 linkvaljeompr—1
Defines a hierarchical, tree-shaped, architecture with levinbr levels and

29

o
N

sub
504157
mesh2D 4 2

Figure 9: Sub-architecture of a 4x2 mesh2D 2D grid architecture. The sub-
architecture comprises 5 vertices, numbered from 0 to 4, which correspond to ver-
tices 0, 4, 1, 5 and 7 of the original architecture, respectively.

Zi:’é”br*l sizeval; leaf vertices. This topology is used to model hierarchi-
cal NUMA or NUIOA machines. The mapping is only computed with respect
to the leaf vertices, which represent processing elements, while the upper lev-
els of the tree model interconnection networks (intra-chip buses, inter-chip
interconnection networks, network routers, etc.), as exemplified in Figure 10.
The communication cost between two nodes is the cost of the highest common

ancestor level.

20
tleaf

7 33202722

LA K R K R,

¢ o d o d o d o & s &
Figure 10: A “tree-leaf” graph with three levels. Processors are drawn in black and
routers in grey. It has 3 levels, the first level has 3 sons and a traversal cost of 20,

the second level has 2 sons and a traversal cost of 7, and the third level has also 2
sons and a traversal cost of 2.

torus2D dimx dimy
Defines a bidimensional array of dimx columns by dimy rows, with
wraparound edges. The vertex with coordinates (posx,posy) has label
posx + posy X dimx.

torus3D dimx dimy dimy
Defines a tridimensional array of dimyx columns by dimy rows by dimyz levels,
with wraparound edges. The vertex with coordinates (posx, posy, posz) has
label posx + posy dimx + poszdimx dimy .

torusXD ndims dimg dimy ... dimpgims—1
Generalization of the torus2D and torus3D architectures. Defines a
ndims-dimensional torus of dimensions dimg, dimy ...dimpgims—1. The
vertex with coordinates (posg,posi,...,pos(ndgims—1)) has label posy +

ndims—1 d—1 .
e (posd | dzmdf).

30

6.4.3 Variable-sized architecture files

Variable-sized architectures are a class of algorithmically-coded architectures the
size of which is not defined a priori. Domains of these target architectures can
always be bipartitioned, again and again (until integer overflow occurs in domain
indices). These architectures are used to perform graph clustering (see Sections 7.4.6
and 8.8.1), using a specifically tailored graph mapping strategy (see for instance
Section 8.16.2).

As for fixed-size algorithmically-coded architectures, they start with an abbrevi-
ation name of the architecture, followed by parameters specific to the architecture.
The available built-in variable-sized architecture definitions are listed below.

varcmplt
Defines a variable-sized complete graph. Domains are labeled such that the
first domain is labeled 1, and the two subdomains of any domain i are labeled
2i¢ and 2i 4+ 1. The distance between any two subdomains ¢ and j is 0 if ¢ = j
and 1 else.

varhcub

Defines a variable-sized hypercube. Domains are labeled such that the first
domain is labeled 1, and the two subdomains of any domain ¢ are labeled 2i
and 27 + 1. The distance between any two domains is the Hamming distance
between the common bits of the two domains, plus half of the absolute dif-
ference between the levels of the two domains, this latter term modeling the
average distance on unknown bits. For instance, the distance between subdo-
main 9 = 1001p, of level 3 (since its leftmost 1 has been shifted left thrice),
and subdomain 53 = 110101, of level 5 (since its leftmost 1 has been shifted
left five times), is equal to 2: it is 1, which is the number of bits which differ
between 1101p (that is, 53 = 110101 shifted rightwards twice) and 10015,
plus 1, which is half of the absolute difference between 5 and 3.

6.5 Mapping files

“

Mapping files, which usually end in “.map”, contain the result of the mapping of
source graphs onto target architectures. They associate a vertex of the target graph
with every vertex of the source graph.

Mapping files begin with the number of mapping lines which they contain, fol-
lowed by that many mapping lines. Each mapping line holds a mapping pair, made
of two integer numbers which are the label of a source graph vertex and the label
of the target graph vertex onto which it is mapped. Mapping pairs can be stored
in any order in the file; however, labels of source graph vertices must be all differ-
ent. For example, Figure 11 shows the result obtained when mapping the source
graph of Figure 4 onto the target architecture of Figure 7. This one-to-one embed-
ding of H(3) into UB(2,3) has dilation 1, except for one hypercube edge which has
dilation 3.

Mapping files are also used on output of the block orderer to represent the
allocation of the vertices of the original graph to the column blocks associated with
the ordering. In this case, column blocks are labeled in ascending order, such that
the number of a block is always greater than the ones of its predecessors in the
elimination process, that is, its leaves in the elimination tree.

31

~N o U1k W NP O
o b J O U1 N W

Figure 11: Mapping file obtained when mapping the hypercube source graph of
Figure 4 onto the binary de Bruijn architecture of Figure 7.

6.6 Ordering files

4

Ordering files, which usually end in “.ord”, contain the result of the ordering of
source graphs or meshes that represent sparse matrices. They associate a number
with every vertex of the source graph or mesh.

The structure of ordering files is analogous to the one of mapping files; they
differ only by the meaning of their data.

Ordering files begin with the number of ordering lines which they contain, that
is the number of vertices in the source graph or the number of nodes in the source
mesh, followed by that many ordering lines. Each ordering line holds an ordering
pair, made of two integer numbers which are the label of a source graph or mesh
vertex and its rank in the ordering. Ranks range from the base value of the graph
or mesh (baseval) to the base value plus the number of vertices (resp. nodes),
minus one (baseval + vertnbr — 1 for graphs, and baseval 4+ vnodnbr — 1 for
meshes). Ordering pairs can be stored in any order in the file; however, indices of
source vertices must be all different.

For example, Figure 12 shows the result obtained when reordering the source
graph of Figure 4.

~N o Uk W NP O @
O b 0P I DN W o

Figure 12: Ordering file obtained when reordering the hypercube graph of Figure 4.

The advantage of having both graph and mesh orderings start from baseval
(and not vnodbas in the case of meshes) is that an ordering computed on the nodal
graph of some mesh has the same structure as an ordering computed from the native
mesh structure, allowing for greater modularity. However, in memory, permutation
indices for meshes are numbered from vnodbas to vnodbas + vnodnbr — 1.

6.7 Vertex list files

Vertex lists are used by programs that select vertices from graphs.
Vertex lists are coded as lists of integer numbers. The first integer is the number
of vertices in the list and the other integers are the labels of the selected vertices,

32

given in any order. For example, Figure 13 shows the list made from three vertices
of labels 2, 45, and 7.

Figure 13: Example of vertex list with three vertices of labels 2, 45, and 7.

7 Programs

The programs of the SCOTCH project belong to five distinct classes.

e Graph handling programs, the names of which begin in “g”, that serve to
build and test source graphs.

e Mesh handling programs, the names of which begin in “m”, that serve to build
and test source meshes.

Wn

e Target architecture handling programs, the names of which begin in “a”,
that allow the user to build and test decomposition-defined target files, and
especially to turn a source graph file into a target file.

e The mapping and ordering programs themselves.

e Output handling programs, which are the mapping performance analyzer, the
graph factorization program, and the graph, matrix, and mapping visualiza-
tion program.

The general architecture of the SCOTCH project is displayed in Figure 14.

7.1 Invocation

The programs comprising the SCOTCH project have been designed to run in
command-line mode without any interactive prompting, so that they can be called
easily from other programs by means of “system ()” or “ popen ()” system
calls, or be piped together on a single shell command line. In order to facilitate
this, whenever a stream name is asked for (either on input or output), the user may
put a single “-” to indicate standard input or output. Moreover, programs read
their input in the same order as stream names are given in the command line. It
allows them to read all their data from a single stream (usually the standard input),
provided that these data are ordered properly.

A brief on-line help is provided with all the programs. To get this help, use the
“~h” option after the program name. The case of option letters is not significant,
except when both the lower and upper cases of a letter have different meanings.
When passing parameters to the programs, only the order of file names is significant;
options can be put anywhere in the command line, in any order. Examples of use
of the different programs of the SCOTCH project are provided in section 10.

Error messages are standardized, but may not be fully explanatory. However,
most of the errors you may run into should be related to file formats, and located in
“ ...Load” routines. In this case, compare your data formats with the definitions
given in section 6, and use the gt st and mtst programs to check the consistency
of source graphs and meshes.

7

33

External External
mesh file graph file

Source
mesh file

. msh .orf

Source
L graph file

nt st | | nord | | gord | | gt st | | gmap | | at st

Ordering
file

Mapping
file

.ord

Ej File

Graphics
1 Program file

— Data flow

Figure 14: General architecture of the SCOTCH project. All of the features offered
by the stand-alone programs are also available in the LIBSCOTCH library.

34

7.2 Using multi-threading

Starting from version 6.1.0, thread management in SCOTCH is dynamic. This allows
the user to control dynamically the number of threads that are used by the threaded
algorithms of the LIBSCcoTCH library and, consequently, by the SCOTCH standalone
programs that call them. These algorithms are enabled when SCOTCH is compiled
with the flag “~-DSCOTCH_PTHREAD” set.

Unless explicitly prevented to do so, SCOTCH standalone programs will detect
the number of cores available on the user’s system and will use as many of them
as prescribed at compile time or, if no upper threshold was set at that time, all
of those which are currently available. This behavior can be controlled further by
means of the shell environment variable “SCOTCH_PTHREAD NUMBER=z", where z
is the prescribed maximum number of threads to be used. Setting a thread number
to 1 will coerce SCOTCH into using only purely sequential algorithms (which may
differ in nature from their multi-threaded counterparts). Setting the thread number
to —1 will make SCOTCH use all available cores, overriding the value possibly set at
compile time.

7.3 Using compressed files

Starting from version 5.0.6, SCOTCH allows users to provide and retrieve data in
compressed form. Since this feature requires that the compression and decompres-
sion tasks run in the same time as data is read or written, it can only be done
on systems which support multi-threading (Posix threads) or multi-processing (by
means of fork system calls).

To determine if a stream has to be handled in compressed form, SCOTCH checks
its extension. If it is “.gz” (gzip format), “.bz2” (bzip2 format) or “.1lzma”
(1zma format), the stream is assumed to be compressed according to the corre-
sponding format. A filter task will then be used to process it accordingly if the
format is implemented in SCOTCH and enabled on your system.

To date, data can be read and written in bzip2 and gzip formats, and can
also be read in the 1zma format. Since the compression ratio of 1zma on SCOTCH
graphs is 30% better than the one of gzip and bzip2 (which are almost equivalent
in this case), the 1zma format is a very good choice for handling very large graphs.
To see how to enable compressed data handling in SCOTCH, please refer to Section 9.

When the compressed format allows it, several files can be provided
on the same stream, and be uncompressed on the fly. For instance,
the command “cat brol.grf.gz brol.xyz.gz | gout —-.gz —-.gz —-Mn
- brol.iv” concatenates the topology and geometry data of some graph brol
and feed them as a single compressed stream to the standard input of program
gout, hence the "-.gz” to indicate a compressed standard stream.

7.4 Description
7.4.1 acpl
Synopsis
acpl [input_target_file [output_target_file]] options

Description

35

The program acpl is the decomposition-defined architecture file compiler. It
processes architecture files of type “deco 0” built by hand or by the amk_*
programs, to create a “deco 1”7 compiled architecture file of about four times
the size of the original one; see section 6.4.1, page 27, for a detailed description
of decomposition-defined target architecture file formats.

The mapper can read both original and compiled architecture file formats.
However, compiled architecture files are read much more efficiently, as they are
directly loaded into memory without further processing. Since the compilation
time of a target architecture graph evolves as the square of its number of
vertices, precompiling with acpl can save some time when many mappings
are to be performed onto the same large target architecture.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

7.4.2 amk_*

Synopsis
amk_ccc dim [output_target_file] options
amk_f£t2 dim [output_target_file] options
amk_hy dim [output_target_file] options
amk_m2 dimX [dimY [output_target_file]] options

amk_p2 weight0 [weight! [output_target_file]] options

Description

The amk_* programs make target graphs. FEach of them is devoted to a
specific topology, for which it builds target graphs of any dimension.

These programs are an alternate way between algorithmically-coded built-in
target architectures and decompositions computed by mapping with amk_grf.
Like built-in target architectures, their decompositions are algorithmically
computed, and like amk_grf, their output is a decomposition-defined target
architecture file. These programs allow the definition and testing of new
algorithmically-coded target architectures without coding them in the core of
the mapper.

Program amk_ccc outputs the target architecture file of a Cube-Connected-
Cycles graph of dimension dim. Vertex (I,m) of CCC(dim), with
0 <l <dimand 0 <m < 2%™ is linked to vertices ((I — 1) mod dim, m),
(14 1) mod dim,m), and (I,m ©2'), and is labeled I x 24™ + m. @ denotes
the bitwise exclusive-or binary operator, and a mod b the integer remainder
of the euclidian division of a by b.

Program amk_fft2 outputs the target architecture file of a binary Fast-
Fourier-Transform graph of dimension dim. Vertex (I,m) of FFT(dim),

36

with 0 < [< dim and 0 < m < 2%™ s linked to vertices (I — 1,m),
(I—1,m mod 2'71), (I4+1,m), and (I+1,m @ 2'), if they exist, and is labeled
[x 24im 4,

Program amk_hy outputs the target architecture file of a hypercube graph
of dimension dim. Vertices are labeled according to the decimal value of
their binary representation. The decomposition-defined target architectures
computed by amk_hy do not exactly give the same results as the built-in
hypercube targets because distances are not computed in the same manner,
although the two recursive bipartitionings are identical. To achieve best
performance and save space, use the built-in architecture.

Program amk_p2 outputs the target architecture file of a weighted path graph
with two vertices, the weights of which are given as parameters.

This simple target topology is used to bipartition a source graph into two
weighted parts with as few cut edges as possible. In particular, it is used
to compute independent partitions of the processors of a multi-user parallel
machine. As a matter of fact, if the yet unallocated part of the machine is
represented by a source graph with n vertices, and n’ processors are requested
by a user in order to run a job (with n’ < n), mapping the source graph onto
the weighted path graph with two vertices of weights n’ and n — n’ leads to
a partition of the machine in which the allocated n’ processors should be as
densely connected as possible (see Figure 15).

a. Construction of a partition with 13 b. Construction of a partition with
vertices (in black) on a 8 x 8 bidimen- 17 vertices (in black) on the remaining
sional mesh architecture. architecture.

Figure 15: Construction of partitions on a bidimensional 8 x 8 mesh architecture
by weighted bipartitioning.

Options

-h Display the program synopsis.

-mmethod
Select the bipartitioning method (for amk_m2 only).
n Nested dissection.

o Dimension-per-dimension one-way dissection. This is less efficient
than nested dissection, and this feature exists only for benchmarking
purposes.

-V Print the program version and copyright.

37

7.4.3 amk grf
Synopsis

amk_grf [input_graph_file [output_target_file]] options
Description

The program amk_grf turns a source graph file into a decomposition-defined
target architecture file.

The -2 option creates a “deco 2” decomposition rather than a “deco 0”
one. See Section 6.4.1, page 27 for more information on the different types of
decomposition-defined target architectures.

The -1 option restricts the target architecture to the vertices indicated in
the given vertex list file. It is therefore possible to build a target architecture
made of several disconnected parts of a bigger architecture. Note that this is
not equivalent to turning a disconnected source graph into a target architec-
ture, since doing so would lead to an architecture made of several independent
pieces at infinite distance one from another. Considering the selected vertices
within their original architecture makes it possible to compute the distance
between vertices belonging to distinct connected components, and therefore
to evaluate the cost of the mapping of two neighbor processes onto disjoint
areas of the architecture.

The restriction feature is very useful in the context of multi-user parallel ma-
chines. On these machines, when users request processors in order to run
their jobs, the partitions allocated by the operating system may not be reg-
ular nor connected, because of existing partitions already attributed to other
people. By feeding amk_grf with the source graph representing the whole
parallel machine, and the vertex list containing the labels of the processors
allocated by the operating system, it is possible to build a target architec-
ture corresponding to this partition, and therefore to map processes on it,
automatically, regardless of the partition shape.

The —b option selects the recursive bipartitioning strategy used to build
the “deco 0” decomposition of the source graph. For regular, unweighted,
topologies, the ' =b (g|h) £x’ recursive bipartitioning strategy should work
best. For irregular or weighted graphs, use the default strategy, which is more
flexible. See also the manual page of function SCOTCH_archBuildO0, page 84,
for further information.

Options

—bstrategy
Use recursive bipartitioning strategy strategy to build the decomposi-
tion of the architecture graph. The format of bipartitioning strategies is
defined within section 8.3.3, at page 69.

-h Display the program synopsis.

- linput_vertex_file
Load vertex list from input_vertez_file. As for all other file names,
may be used to indicate standard input.

“_»

-V Print the program version and copyright.

38

7.4.4 atst

Synopsis
atst [input_target_file [output_data_file]] options

Description

The program atst is the architecture tester. It gives some statistics on
decomposition-defined target architectures, and in particular the minimum,
maximum, and average communication costs (that is, weighted distance) be-
tween all pairs of processors.

Options

-h Display the program synopsis.

-V Print the program version and copyright.

7.4.5 gcv

Synopsis

gcv [input_graph_file [output_graph_file [output_geometry_file]]] options

Description

The program gcv is the source graph converter. It takes on input a graph
file of the format specified with the —i option, and outputs its equivalent
in the format specified with the —o option, along with its associated geom-
etry file whenever geometry data is available. At the time being, it accepts
four input formats: the Matrix Market format [6], the Harwell-Boeing col-
lection format [11], the CHACO/MEIS graph format [26], and the ScoTch
format. Three output format are available: the Matrix Market format, the
CHAcO/MEDNS graph format and the SCOTCH source graph and geometry
data format.

Options

-h Display the program synopsis.

—iformat
Specify the type of input graph. The available input formats are listed
below.

b[number]
Harwell-Boeing graph collection format. Only symmetric assembled
matrices are currently supported. Since files in this format can con-
tain several graphs one after another, the optional integer number,
starting from 0, indicates which graph of the file is considered for
conversion.

c Cuaco v1.0/MEDNS format.

m The Matrix Market format.

s SCOTCH source graph format.

—oformat
Specify the output graph format. The available output formats are listed
below.

39

¢ CnAaco v1.0/MEDNS format.
m The Matrix Market format.
s SCOTCH source graph format.

-V Print the program version and copyright.

Default option set is “~Ib0 —-0s”.

7.4.6 gmap / gpart
Synopsis

gmap [input_graph_file [input_target_file [output_mapping_file [output_log_file]]]]
options

gpart number_of_parts [input_graph_file [output_mapping._file [output_log_file]]]
options

Description

The program gmap is the graph mapper. It uses a partitioning strategy to
map a source graph onto a target graph, so that the weight of source graph
vertices allocated to target vertices is balanced, and the communication cost
function fo is minimized.

The program gpart is the graph partitioner. It uses a partitioning strategy
to split a source graph into the prescribed number of parts, using vertex or
edge separators, depending whether the —o option is set or not.

The implemented mapping methods mainly derive from graph theory.
In particular, graph geometry is never used, even if it is available; only
topological properties are taken into account. Mapping methods are used to
define mapping strategies by means of selection, combination, grouping, and
condition operators.

Mapping methods implemented in version 6.0 comprise direct k-way methods,
including a k-way multilevel framework and k-way local refinement methods,
as well as the Dual Recursive Bipartitioning algorithm, which uses graph
bipartitioning methods. Available bipartitioning methods include a multilevel
framework that uses other bipartitioning methods to compute the initial and
refined bipartitions: an improved implementation of the Fiduccia—Mattheyses
heuristic designed to handle weighted graphs, a diffusion-based algorithm, a
greedy method derived from the Gibbs, Poole, and Stockmeyer algorithm, a
greedy graph growing heuristic, a greedy “exactifying” refinement algorithm
designed to balance vertex loads as much as possible, etc.

gpart is a simplified interface to gmap, which performs graph partitioning
instead of static mapping. Consequently, the desired number of parts has to
be provided, in lieu of the target architecture.

The —-b and —c options allow the user to set preferences on the behavior of
the mapping strategy which is used by default. The —m option allows the user
to define a custom mapping strategy.

Both programs can be used to perform clustering, by means of the —q op-
tion. gpart will perform topology-independent clustering, while gmap may

40

compute locality-preserving clusters when mapping onto variable-sized, non-
complete, architectures (see Section 6.4.3).

If mapping statistics are wanted rather than the mapping output itself, map-
ping output can be set to /dev/null, with option —vmt to get mapping
statistics and timings.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

-brat

Set the maximum load imbalance ratio to rat, which should be a value

comprised between 0 and 1. This option can be used in conjunction with

option —c, but is incompatible with option —m.

—Cflags

Tune execution context options according to the given flags. Some of

these flags are antagonistic, while others can be combined. Default

values depend on compilation flags COMMON_RANDOM_FIXED_SEED and

SCOTCH.DETERMINISTIC.

d Enforce a deterministic behavior across multiple runs, even in a
multi-threaded context. Determinism may slow down execution for
some multi-threaded algorithms, as determinism requires more syn-
chronization across threads. Implies 'f’.

£ Use a fixed random seed. Suffices to enforce determinism in a single-
threaded context.

Use a variable random seed for each run. Opposite of '£’.

Allow for undeterministic behavior across multiple runs. May result

in faster execution in a multi-threaded context. Opposite of ’d’.
-cflags

Tune the default mapping strategy according to the given preference

flags. Some of these flags are antagonistic, while others can be combined.

See Section 8.3.1 for more information. The currently available flags are

the following.

Enforce load balance as much as possible.
Privilege quality over speed.

Only use recursive bipartitioning methods.
Privilege speed over quality.

+ nw K8 Q O

Use only safe methods in the strategy.

This option can be used in conjunction with option —b, but is incompat-
ible with option —m. The resulting strategy string can be displayed by
means of the —vs option.

-h Display the program synopsis.

—mstrat
Apply mapping strategy strat. In the case of static mapping or of edge-
based graph partitioning, the format of mapping strategies should com-
ply with the format defined in Section 8.3.2. If the —o option is used
(see below), strategies must be vertex partitioning strategies, which are
described in Section 8.3.4. This option is incompatible with options -b
and —c.

41

-o Compute vertex-based partitions rather than static mappings or edge-
based partitions. This option is only valid for gpart, or when gmap is
called with a target architecture which is an unweighted complete graph.

-q (for gpart)

—-gpwght
(for gmap) Perform clustering instead of partitioning or mapping. Clus-
tering is achieved by means of a specific strategy string that performs
recursive bipartitioning until the size of the parts is smaller than some
threshold value. For gpart, this value replaces the desired number of
parts as the first argument passed to the program. For gmap, the thresh-
old must be given just after the —q option.

-sobj
Mask source edge and vertex weights. This option allows the user to “un-
weight” weighted source graphs by removing weights from edges and ver-
tices at loading time. obj may contain several of the following switches.

e Remove edge weights, if any.
v Remove vertex weights, if any.
-V Print the program version and copyright.

—vwverb
Set verbose mode to werb, which may contain several of the following
switches. For a detailed description of the data displayed, please refer to
the manual page of gmtst below.

m Mapping or partitioning information, depending whether the —o op-
tion has been set or not.

s Strategy information. This parameter displays the mapping strategy
which will be used by gmap or gpart.

t Timing information.

-V Print the program version and copyright.

7.4.7 gmk *
Synopsis

gmk_hy dim [output_graph_file] options
gmk-m2 dimX [dimY [output_graph_file]] options
gmkm3 dimX [dimY [dimZ [output_graph_file]]] options
gmk_ub2 dim [output_graph_file] options

Description

The gmk_* programs make source graphs. Each of them is devoted to a
specific topology, for which it builds target graphs of any dimension.

The gmk_* programs are mainly used in conjunction with amk_grf. Most
gmk_* programs build source graphs describing parallel machines, which
are used by amk_grf to generate corresponding target sub-architectures,
by means of its =1 option. Such a procedure is shown in section 10, which
builds a target architecture from five vertices of a binary de Bruijn graph of

42

dimension 3.

Program gmk_hy outputs the source file of a hypercube graph of dimension
dim. Vertices are labeled according to the decimal value of their binary
representation.

Program gmk_m2 outputs the source file of a bidimensional grid with
dimX columns and dimY rows. If the —t option is set, tori are built instead
of grids. The vertex of coordinates (posX, posY') is labeled posYx dimX+posX.

Program gmk_m3 outputs the source file of a tridimensional grid with dimZ
layers of dimY rows by dimX columns. If the —t option is set, tori are
built instead of grids. The vertex of coordinates (posX, posY) is labeled
(posZ x dimY + posY) x dimX + posX.

Program gmk_ub2 outputs the source file of a binary unoriented de Bruijn
graph of dimension dim. Vertices are labeled according to the decimal value
of their binary representation.

Options
~bbase_value
Set the base value of the produced graph.
—e Build a 8-neighbor grid rather than a 4-neighbor grid (for gmk_m2 only).

—goutput_geometry_file
Output graph geometry to file output_geometry_file (for gmk_m* only).
As for all other file names, “~” may be used to indicate standard output.

-h Display the program synopsis.
-t Build a torus rather than a grid (for gmk_m* only).
-V Print the program version and copyright.

-y Invert the y coordinate in the produced geometry (for gmk_m* only).

This may be useful to display 2D grids in the PostScript format, using
the gout program, since in this case the y axis is oriented downwards.

7.4.8 gmk_msh

Synopsis

gmk_msh [input_mesh_file [output_graph_file]] options

Description

The gmk_msh program builds a graph file from a mesh file. All of the nodes
of the mesh are turned into graph vertices, and edges are created between
all pairs of vertices that share an element (that is, elements are turned into
cliques).

Options
—-h Display the program synopsis.

-V Print the program version and copyright.

43

7.4.9 gmtst
Synopsis

gmtst [input_graph_file [input_target_file [input_mapping_file [output_data_
file]]]] options

Description

The program gmtst is the graph mapping tester. It outputs some statistics
on the given mapping, regarding load balance and inter-processor communi-
cation.

The two first statistics lines deal with process mapping statistics, while the
following ones deal with communication statistics. The first mapping line
gives the number of processors used by the mapping, followed by the number
of processors available in the architecture, and the ratio of these two numbers,
written between parentheses. The second mapping line gives the minimum,
maximum, and average loads of the processors, followed by the variance of the
load distribution, and an imbalance ratio equal to the maximum load over the
average load. The first communication line gives the minimum and maximum
number of neighbors over all blocks of the mapping, followed by the sum of the
number of neighbors over all blocks of the mapping, that is the total number
of messages that have to be sent to exchange data between all neighboring
blocks. The second communication line gives the average dilation of the edges,
followed by the sum of all edge dilations. The third communication line gives
the average expansion of the edges, followed by the value of function feo. The
fourth communication line gives the average cut of the edges, followed by the
number of cut edges. The fifth communication line shows the ratio of the aver-
age expansion over the average dilation; it is smaller than 1 when the mapper
succeeds in putting heavily intercommunicating processes closer to each other
than it does for lightly communicating processes; it is equal to 1 if all edges
have the same weight. The remaining lines form a distance histogram, which
shows the amount of communication load that involves processors located at
increasing distances.

gmtst allows the testing of cross-architecture mappings. By inputing it a
target architecture different from the one that has been used to compute the
mapping, but with compatible vertex labels, one can see what the mapping
would yield on this new target architecture.

Options
-h Display the program synopsis.

-V Print the program version and copyright.

7.4.10 gord
Synopsis
gord [input_graph_file [output_ordering_file [output_log_file]]] options
Description

The gord program is the block sparse matrix graph orderer. It uses an
ordering strategy to compute block orderings of sparse matrices represented

44

as source graphs, whose vertex weights indicate the number of DOFs per node
(if this number is non homogeneous) and whose edges are unweighted, in order
to minimize fill-in and operation count.

Since its main purpose is to provide orderings that exhibit high concurrency
for parallel block factorization, it comprises a nested dissection method [19],
but classical [42] and state-of-the-art [1, 49] minimum degree algorithms are
implemented as well. Ordering methods are used to define ordering strategies
by means of selection, grouping, and condition operators.

For the nested dissection method, vertex separation methods comprise al-
gorithms that directly compute vertex separators, as well as methods that
build vertex separators from edge separators, i.e. graph bipartitions (all of
the graph bipartitioning methods available in the static mapper gmap can be
used in this latter case).

The —o option allows the user to define the ordering strategy. The —c option
allows the user to set preferences on the behavior of the ordering strategy
which is used by default.

When the graphs to order are very large, the same results can be obtained by
using the dgord parallel program of the PT-ScoTcH distribution, which can
read centralized graph files too.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

—Cflags
Tune execution context options according to the given flags. Some of
these flags are antagonistic, while others can be combined. Default
values depend on compilation flags COMMON_RANDOM_FIXED_SEED and
SCOTCH.DETERMINISTIC.

d Enforce a deterministic behavior across multiple runs, even in a
multi-threaded context. Determinism may slow down execution for
some multi-threaded algorithms, as determinism requires more syn-
chronization across threads. Implies 'f’.

£ Use a fixed random seed. Suffices to enforce determinism in a single-
threaded context.

Use a variable random seed for each run. Opposite of "f’.

u Allow for undeterministic behavior across multiple runs. May result

in faster execution in a multi-threaded context. Opposite of 'd’.
—cflags

Tune the default ordering strategy according to the given preference flags.

Some of these flags are antagonistic, while others can be combined. See

Section 8.3.1 for more information. The resulting strategy string can be

displayed by means of the —vs option.

Enforce load balance as much as possible.

g Privilege quality over speed. This is the default behavior.
s Privilege speed over quality.
t Use only safe methods in the strategy.

45

-h Display the program synopsis.

—moutput_mapping._file

Write to output_mapping_file the mapping of graph vertices to column
blocks. All of the separators and leaves produced by the nested dissection
method are considered as distinct column blocks, which may be in turn
split by the ordering methods that are applied to them. Distinct integer
numbers are associated with each of the column blocks, such that the
number of a block is always greater than the ones of its predecessors in
the elimination process, that is, its descendants in the elimination tree.
The structure of mapping files is given in section 6.5.

When the geometry of the graph is available, this mapping file may be
processed by program gout to display the vertex separators and super-
variable amalgamations that have been computed.

—ostrat
Apply ordering strategy strat. The format of ordering strategies is defined
in section 8.3.5.

—t output_tree_file

Write to output_tree_file the structure of the separator tree. The data
that is written resembles much the one of a mapping file: after a first
line that contains the number of lines to follow, there are that many lines
of mapping pairs, which associate an integer number with every graph
vertex index. This integer number is the number of the column block
which is the parent of the column block to which the vertex belongs,
or —1 if the column block to which the vertex belongs is a root of the
separator tree (there can be several roots, if the graph is disconnected).
Combined to the column block mapping data produced by option —m,
the tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

—vwverb
Set verbose mode to werb, which may contain several of the following
switches.

s Strategy information. This parameter displays the ordering strategy
which will be used by gord.

t Timing information.

7.4.11 gotst
Synopsis
gotst [input_graph_file [input_ordering_file [output_data_file]]] options
Description

The program gotst is the ordering tester. It gives some statistics on or-
derings, including the number of non-zeros and the operation count of the
factored matrix, as well as statistics regarding the elimination tree. Since it
performs the factorization of the reordered matrix, it can take a very long
time and consume a large amount of memory when applied to large graphs.

The first two statistics lines deal with the elimination tree. The first one
displays the number of leaves, while the second shows the minimum height

46

of the tree (that is, the length of the shortest path from any leaf to the —or
a— root node), its maximum height, its average height, and the variance of
the heights with respect to the average. The third line displays the number of
non-zero terms in the factored matrix, the amount of index data that is neces-
sary to maintain the block structure of the factored matrix, and the number of
operations required to factor the matrix by means of Cholesky factorization.

Options

-h Display the program synopsis.
—-v Do not account for vertex weights when computing factorization costs.

-V Print the program version and copyright.

7.4.12 gout

Synopsis

gout [input_graph_file [input_geometry_file [input-mapping-file [output_
visualization_file]]]] options

Description

The gout program is the graph, matrix, and mapping viewer program. It
takes on input a source graph, its geometry file, and optionally a mapping re-
sult file, and produces a file suitable for display. At the time being, gout can
generate plain and encapsulated PostScript files for the display of adjacency
matrix patterns and the display of planar graphs (although tridimensional
objects can be displayed by means of isometric projection, the display of tridi-
mensional mappings is not efficient), and OPEN INVENTOR [57], TULIP [4],
and VTK files for the interactive visualization of tridimensional graphs.

In the case of mapping display, the number of mapping pairs contained in the
input mapping file may differ from the number of vertices of the input source
graph; only mapping pairs the source labels of which match labels of source
graph vertices will be taken into account for display. This feature allows the
user to show the result of the mapping of a subgraph drawn on the whole
graph, or else to outline the most important aspects of a mapping by restrict-
ing the display to a limited portion of the graph. For example, Figure 16.b
shows how the result of the mapping of a subgraph of the bidimensional mesh
M5(4,4) onto the complete graph K(2) can be displayed on the whole My (4,4)
graph, and Figure 16.c shows how the display of the same mapping can be
restricted to a subgraph of the original graph.

Options

—gparameters
Geometry parameters.

n Do not read geometry data. This option can be used in conjunction
with option —om to avoid reading the geometry file when displaying
the pattern of the adjacency matrix associated with the source graph,
since geometry data are not needed in this case. If this option is set,
the geometry file is not read. However, if an output_visualization_file
name is given in the command line, dummy input_geometry_file and
input_mapping_file names must be specified so that the file argument

47

a. A subgraph of Ms(4,4) to b. Mapping result displayed
be mapped onto K(2). on the full My(4,4) graph.

c. Mapping result dis-
played on another subgraph
of My(4,4).

Figure 16: PostScript diplay of a single mapping file with different subgraphs of the
same source graph. Vertices covered with disks of the same color are mapped onto
the same processor.

“_»

count is correct. In this case, use the parameter to take standard
input as a dummy geometry input stream. In practice, the —om and
—gn options always imply the —mn option.

r For bidimensional geometry only, rotate geometry data by 90 de-
grees, counter-clockwise.

-h Display the program synopsis.

-mn
Do not read mapping data, and display the graph without any mapping
information. If this option is set, the mapping file is not read. However, if
an output_visualization_file name is given in the command line, a dummy
put-mapping-file name must be specified so that the file argument count
is correct. In this case, use the “~” parameter to take standard input as

a dummy mapping input stream.

—oformat[{parameters}]
Specify the type of output, with optional parameters within curly braces
and separated by commas. The output formats are listed below.

i Output the graph in SGI’s OPEN INVENTOR format, in ASCII mode,
suitable for display by the ivview program [57]. The optional pa-
rameters are given below.

c Color output, using 16 different colors. Opposite of g.

48

g Grey-level output, using 8 different levels. Opposite of c.

r Remove cut edges. Edges the ends of which are mapped onto
different processors are not displayed. Opposite of v.

v View cut edges. All graph edges are displayed. Opposite of r.

Output the pattern of the adjacency matrix associated with the
source graph, in Adobe’s PostScript format. The optional parame-
ters are given below.

e Encapsulated PostScript output, suitable for IATEX use with
epsf. Opposite of f.

f Full-page PostScript output, suitable for direct printing. Oppo-
site of e.

Output the graph in Adobe’s PostScript format. The optional pa-

rameters are given below.

a Avoid displaying the mapping disks. Opposite of d.

¢ Color PostScript output, using 16 different colors. Opposite of
g.
Display the mapping disks. Opposite of a.

Encapsulated PostScript output, suitable for IATEX use with
epsf. Opposite of f.

f Full-page PostScript output, suitable for direct printing. Oppo-
site of e.

g Grey-level PostScript output. Opposite of c.

1 Large clipping. Mapping disks are included in the clipping area
computation. Opposite of s.

r Remove cut edges. Edges the ends of which are mapped onto
different processors are not displayed. Opposite of v.

s Small clipping. Mapping disks are excluded from the clipping
area computation. Opposite of 1.
v View cut edges. All graph edges are displayed. Opposite of r.
x=val
Minimum X relative clipping position (in [0.0;1.0]).
X=val
Maximum X relative clipping position (in [0.0;1.0]).
y=val
Minimum Y relative clipping position (in [0.0;1.0]).
Y=val
Maximum Y relative clipping position (in [0.0;1.0]).
Output the graph in the TULIP graph format, suitable for display by
the TULIP data visualization software [4]. The optional parameters
are given below.

a Avoid displaying mapping spheres around vertices. Opposite of
d.

Black-and-white output. Opposite of c.
Color output, using 16 different colors. Opposite of b.
Display mapping spheres around vertices. Opposite of a.

5 QO Q O

Remove cut edges. Edges the ends of which are mapped onto
different processors are not displayed. Opposite of v.

49

v View cut edges. All graph edges are displayed. Opposite of r.

v Output the graph in VTK legacy ASCII format, suitable for display
by the paraview program [38]. The graph partition is represented
as an integer scalar dataset called mapvalues. Unmapped vertices
are assigned to part index 0, while higher part indices represent
regular parts (hence, part number ¢ of some mapping becomes part
index ¢+ 1 in the VTK dataset). The optional parameters are given
below.

r Remove cut edges. Edges the ends of which are mapped onto
different processors are not displayed. Opposite of v.

v View cut edges. All graph edges are displayed. Opposite of r.

-V Print the program version and copyright.

Default option set is “~0i{v}”.

7.4.13 gtst
Synopsis

gtst [input_graph_file [output_data_file]] options
Description

The program gtst is the source graph tester. It checks the consistency of
the input source graph structure (matching of arcs, number of vertices and
edges, etc.), and gives some statistics regarding edge weights, vertex weights,
and vertex degrees.

When the graphs to test are very large, the same results can be obtained by
using the dgt st parallel program of the PT-ScoTcH distribution, which can
read centralized graph files too.

Options
-h Display the program synopsis.
-V Print the program version and copyright.
7.4.14 mcv
Synopsis
mcv [input_-mesh_file [output_mesh_file [output_geometry_file]]] options

Description

The program mcv is the source mesh converter. It takes on input a mesh file
of the format specified with the —i option, and outputs its equivalent in the
format specified with the —o option, along with its associated geometry file
whenever geometrical data is available. At the time being, it only accepts one
external input format: the Harwell-Boeing format [11], for square elemental
matrices only. The only output format to date is the SCOTCH source mesh
and geometry data format.

Options

50

-h Display the program synopsis.

—iformat
Specify the type of input mesh. The available input formats are listed
below.

b[number]
Harwell-Boeing mesh collection format. Only symmetric elemental
matrices are currently supported. Since files in this format can con-
tain several meshes one after another, the optional integer number,
starting from 0, indicates which mesh of the file is considered for
conversion.

s SCOTCH source mesh format.

—oformat
Specify the output graph format. The available output formats are listed
below.

s SCOTCH source graph format.

-V Print the program version and copyright.

Default option set is “~Ib0 -0s”.

7.4.15 mmk_*

Synopsis
mmk_m2 dimX [dimY [output_-mesh_file]] options

mmk_m3 dimX [dimY [dimZ [output_-mesh_file]]] options

Description

The mmk_* programs make source meshes.

Program mmk_m2 outputs the source file of a bidimensional mesh with
dimX x dimY elements and (dimX + 1) x (dimY + 1) nodes. The element
of coordinates (posX, posY') is labeled posY x dimX + posX.

Program mmk_m3 outputs the source file of a tridimensional mesh with
dimX x dimY x dimZ elements and (dimX + 1) x (dimY + 1) x (dimZ + 1)
nodes.

Options

—goutput_geometry_file
Output mesh geometry to file output_geometry_file (for mmk _m2 only). As
for all other file names, “~” may be used to indicate standard output.

-h Display the program synopsis.

-V Print the program version and copyright.

51

7.4.16 mord

Synopsis
mord [input_mesh_file [output_ordering._file [output_log_file]]] options

Description

The mord program is the block sparse matrix mesh orderer. It uses an or-
dering strategy to compute block orderings of sparse matrices represented as
source meshes, whose node vertex weights indicate the number of DOF's per
node (if this number is non homogeneous), in order to minimize fill-in and
operation count.

Since its main purpose is to provide orderings that exhibit high concurrency
for parallel block factorization, it comprises a nested dissection method [19],
but classical [42] and state-of-the-art [1, 49] minimum degree algorithms are
implemented as well. Ordering methods are used to define ordering strategies
by means of selection, grouping, and condition operators.

The —o option allows the user to define the ordering strategy. The —c option
allows the user to set preferences on the behavior of the ordering strategy
which is used by default.

Options
Since the program is devoted to experimental studies, it has many optional
parameters, used to test various execution modes. Values set by default will
give best results in most cases.

—cflags
Tune the default ordering strategy according to the given preference flags.
Some of these flags are antagonistic, while others can be combined. See
Section 8.3.1 for more information. The resulting strategy string can be
displayed by means of the —vs option.

b Enforce load balance as much as possible.
q Privilege quality over speed. This is the default behavior.
s Privilege speed over quality.

t Use only safe methods in the strategy.
-h Display the program synopsis.

—-moutput_mapping._file

Write to output_mapping_file the mapping of mesh node vertices to col-
umn blocks. All of the separators and leaves produced by the nested
dissection method are considered as distinct column blocks, which may
be in turn split by the ordering methods that are applied to them. Dis-
tinct integer numbers are associated with each of the column blocks, such
that the number of a block is always greater than the ones of its prede-
cessors in the elimination process, that is, its leaves in the elimination
tree. The structure of mapping files is given in section 6.5.

When the coordinates of the node vertices are available, the mapping
file may be processed by program gout, along with the graph structure
that can be created from the source mesh file by means of the gmk._
msh program, to display the node vertex separators and supervariable
amalgamations that have been computed.

52

—ostrat
Apply ordering strategy strat. The format of ordering strategies is defined
in section 8.3.5.

—toutput_tree_file

Write to output_tree_file the structure of the separator tree. The data
that is written resembles much the one of a mapping file: after a first
line that contains the number of lines to follow, there are that many
lines of mapping pairs, which associate an integer number with every
node vertex index. This integer number is the number of the column
block which is the parent of the column block to which the node vertex
belongs, or —1 if the column block to which the node vertex belongs is
a root of the separator tree (there can be several roots, if the mesh is
disconnected).

Combined to the column block mapping data produced by option -m,
the tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

—vverb
Set verbose mode to werb, which may contain several of the following
switches.

s Strategy information. This parameter displays the default ordering
strategy used by mord.
t Timing information.

7.4.17 mtst
Synopsis
mtst [input-mesh_file [output_data_file]] options

Description

The program mtst is the source mesh tester. It checks the consistency of
the input source mesh structure (matching of arcs that link elements to nodes
and nodes to elements, number of elements, nodes, and edges, etc.), and gives
some statistics regarding element and node weights, edge weights, and element
and node degrees.

Options

—-h Display the program synopsis.

-V Print the program version and copyright.

8 Library

All of the features provided by the programs of the SCOTCH distribution may be
directly accessed by calling the appropriate functions of the LIBSCOTCH library,
archived in files 1ibscotch.a and libscotcherr.a. These routines belong to
six distinct classes:

e source graph and source mesh handling routines, which serve to declare, build,
load, save, and check the consistency of source graphs and meshes, along with
their geometry data;

53

© 0 N e oA W N R

I S S S
o o A W N R O

e target architecture handling routines, which allow the user to declare, build,
load, and save target architectures;

e strategy handling routines, which allow the user to declare and build mapping
and ordering strategies;

e mapping routines, which serve to declare, compute, and save mappings of
source graphs to target architectures by means of mapping strategies;

e a partitioning-with-overlap routine, which computes a vertex separator that
splits a graph into a prescribed number of parts, such that the vertex load of
each part and of its neighboring separator vertices are balanced;

e ordering routines, which allow the user to declare, compute, and save orderings
of source graphs and meshes;

e error handling routines, which allow the user either to provide his own error
servicing routines, or to use the default routines provided in the LIBSCOTCH
distribution.

A MEIS compatibility library, called 1ibscotchmetis.a, is also available. It
allows users who were previously using MEIIS in their software to take advantage of
the efficieny of SCOTCH without having to modify their code. The services provided
by this library are described in Section 8.24.

8.1 Calling the routines of LIBSCOTCH
8.1.1 Calling from C

All of the C routines of the LIBSCOTCH library are prefixed with “SCOTCH_”. The
remainder of the function names is made of the name of the type of object to which
the functions apply (e.g. “graph”, “mesh”, “arch”, “map”, etc.), followed by the
type of action performed on this object: “Init” for the initialization of the object,
“Exit” for the freeing of its internal structures, “Load” for loading the object from
a stream, and so on.

Typically, functions that return an error code return zero if the function suc-
ceeds, and a non-zero value in case of error.

For instance, the SCOTCH_graphInit and SCOTCH._graphLoad routines, de-
scribed in sections 8.7.16 and 8.7.17, respectively, can be called from C by using the
following code.

#include <stdio.h>
#include "scotch.h"

SCOTCH_Graph grafdat;
FILE * fileptr;

if (SCOTCH_graphInit (&grafdat) != 0) {
. /* Error handling =/

}

if ((fileptr = fopen ("brol.grf", "r")) == NULL) {
. /# Error handling */

}

if (SCOTCH_graphlLoad (&grafdat, fileptr, -1, 0) != 0) {
. /# Error handling =/

}

54

© 0w N oA W N R

= e
N o= O

Since “scotch.h” uses several system objects which are declared in
“stdio.h”, this latter file must be included beforehand in your application code.

Although the “scotch.h” and “ptscotch.h” files may look very similar on
your system, never mistake them, and always use the “scotch.h” file as the in-
clude file for compiling a program which uses only the sequential routines of the
LIBSCOTCH library.

8.1.2 Calling from Fortran

The routines of the LIBSCOTCH library can also be called from Fortran. For any C
function named SCOTCH_typeAction () which is documented in this manual, there
exists a SCOTCHF TYPEACTION () Fortran counterpart, in which the separating
underscore character is replaced by an “F”. In most cases, the Fortran routines
have exactly the same parameters as the C functions, save for an added trailing
INTEGER argument to store the return value yielded by the function when the
return type of the C function is not void.

Since all the data structures used in LIBSCOTCH are opaque, equivalent declara-
tions for these structures must be provided in Fortran. These structures must there-
fore be defined as arrays of DOUBLEPRECISIONS, of sizes given in file scotchf.h,
which must be included whenever necessary.

For routines which read or write data using a FILE »* stream in C, the Fortran
counterpart uses an INTEGER parameter which is the numer of the Unix file de-
scriptor corresponding to the logical unit from which to read or write. In most Unix
implementations of Fortran, standard descriptors 0 for standard input (logical unit
5), 1 for standard output (logical unit 6) and 2 for standard error are opened by
default. However, for files which are opened using OPEN statements, an additional
function must be used to obtain the number of the Unix file descriptor from the
number of the logical unit. This function is called PXFFILENO in the normalized
POSIX Fortran API, and files which use it should include the USE IFPOSIX di-
rective whenever necessary. An alternate, non normalized, function also exists in
most Unix implementations of Fortran, and is called FNUM.

For instance, the SCOTCH_graphInit and SCOTCH._graphLoad routines, de-
scribed in sections 8.7.16 and 8.7.17, respectively, can be called from Fortran by
using the following code.

INCLUDE "scotchf.h"
DOUBLEPRECISION GRAFDAT (SCOTCH_GRAPHDIM)
INTEGER RETVAL

CALL SCOTCHFGRAPHINIT (GRAFDAT (1), RETVAL)
IF (RETVAL .NE. (0) THEN

OPEN (10, FILE='brol.grf’)

CALL SCOTCHFGRAPHLOAD (GRAFDAT (1), FNUM (10), 1, 0, RETVAL)
CLOSE (10)

IF (RETVAL .NE. 0) THEN

Although the “scotchf.h” and “ptscotchf.h” files may look very similar
on your system, never mistake them, and always use the “scotchf.h” file as the
include file for compiling a program which uses only the sequential routines of the
LIBSCOTCH library.

95

8.1.3 Compiling and linking

The compilation of C or Fortran routines which use routines of the LIBSCOTCH
library requires that either “scotch.h” or “scotchf.h” be included, respectively.

The routines of the LIBSCOTCH library are grouped in a library file called
libscotch.a. Default error routines that print an error message and exit are
provided in library file 1ibscotcherr.a.

Therefore, the linking of applications that make use of the LIBSCOTCH li-
brary with standard error handling is carried out by using the following options:
“~lscotch -lscotcherr -1m”. If you want to handle errors by yourself, you
should not link with library file 1ibscotcherr.a, but rather provide a SCOTCH_
errorPrint () routine. Please refer to section 8.19 for more information.

Programs that call both sequential and parallel routines of SCOTCH should use
only the parallel versions of the include file and of the library. Please refer to the
equivalent section of the PT-SCOTCH user’s manual for more information.

8.1.4 Dynamic library issues

The advantage of dynamic libraries is that application code may not need to be
recompiled when the library is updated. Whether this is true or not depends on
the extent of the changes. One of the cases when recompilation is mandatory is
when API data structures change: code that statically reserves space for them may
be subject to boundary overflow errors when the size of library data structures
increase, so that library routines operate on more space than what was statically
allocated by the compiler based on the header files of the old version of the library.

In order to alleviate this problem, the LIBSCOTCH proposes a set of routines
to dynamically allocate storage space for the opaque API SCOTCH structures. Be-
cause these routines return pointers, these SCOTCH_xAlloc routines, as well as
the SCOTCH_free routine, are only available in the C interface. Alternately, the
SCOTCH_xSizeof routines may be used to obtain dynamically the size of these
opaque structures.

8.1.5 Machine word size issues

Graph indices are represented in SCOTCH as integer values of type SCOTCH_Num.
By default, this type equates to the int C type, that is, an integer type of size equal
to the one of the machine word. However, it can represent any other integer type.
Indeed, the size of the SCOTCH_Num integer type can be coerced to 32 or 64 bits by
using the “~-DINTSIZE32” or “~-DINTSIZE64” compilation flags, respectively, or
else by using the “~-DINT=" definition (see Section 9.3 for more information on the
setting of these compilation flags).

Consequently, the C interface of SCOTCH uses two types of integers. Graph-
related quantities are passed as SCOTCH_Nums, while system-related values such as
file handles, as well as return values of LIBSCOTCH routines, are always passed as
ints.

Because of the variability of library integer type sizes, one must be careful when
using the Fortran interface of SCOTCH, as it does not provide any prototyping
information, and consequently cannot produce any warning at link time. In the
manual pages of the LIBSCOTCH routines, Fortran prototypes are written using
three types of INTEGERs. As for the C interface, the regular INTEGER type is used
for system-based values, such as file handles and MPI communicators, as well as
for return values of the LIBSCOTCH routines, while the INTEGER*num type should

56

be used for all graph-related values, in accordance to the size of the SCOTCH_
Num type, as set by the “~-DINTSIZEz” compilation flags. Also, the INTEGERidx
type represents an integer type of a size equivalent to the one of a SCOTCH_Idx,
as set by the “~-DIDXSIZEz” compilation flags. Values of this type are used in
the Fortran interface to represent arbitrary array indices which can span across the
whole address space, and consequently deserve special treatment.

In practice, when ScoTCH is compiled on a 32-bit architecture so as to
use 64-bit SCOTCH_Nums, graph indices should be declared as INTEGER=*8,
while error return values should still be declared as plain INTEGER (that is,
INTEGER~*4) values. On a 32_64-bit architecture, irrespective of whether SCOTCH-
Nums are defined as INTEGERx4 or INTEGERx8 quantities, the SCOTCH_
Idx type should always be defined as a 64-bit quantity, that is, an INTEGER*8,
because it stores differences between memory addresses, which are represented by
64-bit values. The above is no longer a problem if SCOTCH is compiled such that
ints equate 64-bit integers. In this case, there is no need to use any type coercing
definition.

The MEDS v3 compatibility library provided by SCOTCH can also run on a
64-bit architecture. Yet, if you are willing to use it this way, you will have to
replace all int’s that are passed to the MEIIS routines by 64-bit integer SCOTCH_
Num values (even the option configuration values). However, in this case, you will no
longer be able to link against the service routines of the genuine MEIIS v3 library,
as they are only available as a 32-bit implementation.

8.1.6 Using multi-threading

Starting from version 6.1.0, thread management in SCOTCH is dynamic. This allows
the user to control dynamically the number of threads that are used by the threaded
algorithms of the LIBSCOTCH library. These algorithms are enabled when SCoOTCH
is compiled with the flag “~-DSCOTCH_PTHREAD” set.

Unless explicitly prevented to do so, LIBSCOTCH library routines will detect the
number of cores available on the user’s system and will use as many of them as
prescribed at compile time or, if no upper threshold was set at that time, all of
those which are currently available. This behavior can be controlled further by
means of the shell environment variable “SCOTCH_PTHREAD_NUMBER=xz", where x
is the prescribed maximum number of threads to be used. Setting a thread number
to 1 will coerce SCOTCH into using only purely sequential algorithms (which may
differ in nature from their multi-threaded counterparts). Setting the thread number
to —1 will make SCOTCH use all available cores, overriding the value possibly set at
compile time.

Another way for users to control concurrency is to use SCOTCH_Context objects
(see Section 8.21). These objects define user-configurable execution contexts, in
which LIBSCOTCH library routines can be executed independently from others. They
allow the user to prescribe a given number of threads, as well as their binding to
the available cores, or even to capture a pool of existing threads, to make them
participate in the computation of LIBSCOTCH library routines. They also allow the
user to create private pseudo-random generators, so that concurrently executing
library routines do not interfere with each other and produce fully reproducible
results.

Thread binding is essential to achieve good performance of multi-threaded pro-
grams. In SCOTCH, the only thread binding mechanism implemented to date re-

o7

lies on the Linux binding API. Please make sure to compile with flag “~DCOMMON_
PTHREAD_AFFINITY_LINUX” set whenever possible, to benefit from these features.

8.2 Data types

All of the data used in the LIBSCOTCH interface are of integer type SCOTCH_Num.
To hide the internals of SCOTCH to callers, all of the data structures are opaque,
that is, declared within “scotch.h” as dummy arrays of double precision
values, for the sake of data alignment. Accessor routines, the names of which end
in “Size” and “Data”, allow callers to retrieve information from opaque structures.

In all of the following, whenever arrays are defined, passed, and accessed, it
is assumed that the first element of these arrays is always labeled as baseval,
whether baseval is set to 0 (for C-style arrays) or 1 (for Fortran-style arrays).
SCOTCH internally manages with base values and array pointers so as to process
these arrays accordingly.

8.2.1 SCOTCH Arch architecture type

Target architecture structures are completely opaque. The only way to describe an
architecture is by means of a graph passed to the SCOTCH_archBuild or SCOTCH_
archBuild2 routines.

8.2.2 SCOTCH Graph graph type

Source graphs are described by means of adjacency lists. These data are stored in
arrays and scalars of type SCOTCH_Num, as shown in Figures 17 and 18. The graph
fields have the following meaning:

baseval
Base value for all array indexing.

vertnbr
Number of vertices in graph.

edgenbr
Number of arcs in graph. Since edges are represented by both of their ends,
the number of edge data in the graph is twice the number of graph edges.

verttab
Array of start indices in edgetab of vertex adjacency sub-arrays.

vendtab
Array of after-last indices in edgetab of vertex adjacency sub-arrays. For any
vertex ¢, with baseval < i < (baseval + vertnbr), (vendtab[i| — verttab[i])
is the degree of vertex i, and the indices of the neighbors of ¢ are stored in
edgetab from edgetab[verttab|i]] to edgetab[vendtabli] — 1], inclusive.

When all vertex adjacency lists are stored in order in edgetab, it is possible to
save memory by not allocating the physical memory for vendtab. In this case,
illustrated in Figure 17, verttab is of size vertnbr + 1 and vendtab points to
verttab + 1. This case is referred to as the “compact edge array” case, such
that verttab is sorted in ascending order, verttablbaseval] = baseval and
verttablbaseval + vertnbr| = (baseval + edgenbr).

o8

baseval
vert nbr
edgenbr

vibltab =
velotab [4[1[4]4[4 4 4
vendtab —

verttab ’T 4110/1316/19]2225

edgetab [[3[6[3[4/17d512427BFRl6l2[1]5[5[2]4

ediotab [1]1[1[20 41493122 21 21 8[3[3[1[3[1]2]1

Figure 17: Sample graph and its description by LIBSCOTCH arrays using a compact
edge array. Numbers within vertices are vertex indices, bold numbers close to
vertices are vertex loads, and numbers close to edges are edge loads. Since the edge
array is compact, verttab is of size vertnbr+ 1 and vendtab points to verttab+1.

verttab |17/ 2|1310[2027/23

T ;
edgetab [[3[4[1]7] e\ﬂf\ \Mﬂiﬂf\ B2 bfb Rl6[5]2]a] [2][1]5] |
!

—

vendt ab |20| 816/13/23/30/26|
ediotab [[2[2[1]2]3 g [[41 2122 [Lhhfigfafafafi] [3[1]3] |

Figure 18: Adjacency structure of the sample graph of Figure 17 with disjoint edge
and edge load arrays. Both verttab and vendtab are of size vertnbr. This allows
for the handling of dynamic graphs, the structure of which can evolve with time.

velotab
Optional array, of size vertnbr, holding the integer load associated with every
vertex.

edgetab
Array, of a size equal at least to (max;(vendtab[i]) — baseval), holding the
adjacency array of every vertex.

edlotab
Optional array, of a size equal at least to (max;(vendtab[i]) — baseval), hold-
ing the integer load associated with every arc. Matching arcs should always
have identical loads.

Dynamic graphs can be handled elegantly by using the vendtab array. In order
to dynamically manage graphs, one just has to allocate verttab, vendtab and
edgetab arrays that are large enough to contain all of the expected new vertex and
edge data. Original vertices are labeled starting from baseval, leaving free space at
the end of the arrays. To remove some vertex ¢, one just has to replace verttabli]
and vendtab|i] with the values of verttab[vertnbr — 1] and vendtab[vertnbr — 1],

99

respectively, and browse the adjacencies of all neighbors of former vertex vertnbr —
1 such that all (vertnbr — 1) indices are turned into is. Then, vertnbr must
be decremented, and SCOTCH_graphBuild () must be called to account for the
change of topology. If a graph building routine such as SCOTCH_graphLoad () or
SCOTCH_graphBuild () had already been called on the SCOTCH_Graph structure,
SCOTCH_graphFree () has to be called first in order to free the internal structures
associated with the older version of the graph; else, these data would be lost, which
would result in memory leakage.

To add a new vertex, one has to fill verttab[vertnbr — 1] and vendtab[vertnbr
— 1] with the starting and end indices of the adjacency sub-array of the new vertex.
Then, the adjacencies of its neighbor vertices must also be updated to account for
it. If free space had been reserved at the end of each of the neighbors, one just has
to increment the vendtab|i] values of every neighbor ¢, and add the index of the new
vertex at the end of the adjacency sub-array. If the sub-array cannot be extended,
then it has to be copied elsewhere in the edge array, and both verttabli] and
vendtab[i] must be updated accordingly. With simple housekeeping of free areas
of the edge array, dynamic arrays can be updated with as little data movement as
possible.

8.2.3 SCOTCH Mesh mesh type

Since meshes are basically bipartite graphs, source meshes are also described by
means of adjacency lists. The description of a mesh requires several SCOTCH _Num
scalars and arrays, as shown in Figure 19. They have the following meaning;:

velmbas
Base value for element indexings.

vnodbas
Base value for node indexings. The base value of the underlying graph,
baseval, is set as min(velmbas, vnodbas).

velmnbr
Number of element vertices in mesh.

vnodnbr
Number of node vertices in mesh. The overall number of vertices in the
underlying graph, vertnbr, is set as velmnbr + vnodnbr.

edgenbr
Number of arcs in mesh. Since edges are represented by both of their ends,
the number of edge data in the mesh is twice the number of edges.

verttab
Array of start indices in edgetab of vertex (that is, both elements and nodes)
adjacency sub-arrays.

vendtab
Array of after-last indices in edgetab of vertex adjacency sub-arrays. For
any element or node vertex ¢, with baseval < i < (baseval + vertnbr),
vendtabli] — verttabli] is the degree of vertex 4, and the indices of
the neighbors of i are stored in edgetab from edgetablverttabl[i]] to
edgetab|vendtabl[i] — 1], inclusive.

60

vel nbas
vnodbas
vel rmbr
vnodnbr
edgenbr
vibltab -
velotab
vendtab —

verttab [1]5]9[1314]16/182021]222325)

edgetab [5[11[7[6l10[5114 d 967 2 21 L3 L BB [B2[2]1:

Figure 19: Sample mesh and its description by LIBSCOTCH arrays using a compact
edge array. Numbers within vertices are vertex indices. Since the edge array is
compact, verttab is of size (vertnbr + 1) and vendtab points to (verttab + 1).

When all vertex adjacency lists are stored in order in edgetab, it is possible to
save memory by not allocating the physical memory for vendtab. In this case,
illustrated in Figure 19, verttab is of size (vertnbr + 1) and vendtab points
to (verttab + 1). This case is referred to as the “compact edge array” case,
such that verttab is sorted in ascending order, verttab[baseval] = baseval
and verttab[baseval + vertnbr| = (baseval + edgenbr).

velotab
Array, of size vertnbr, holding the integer load associated with each vertex.

As for graphs, it is possible to handle elegantly dynamic meshes by means of the
verttab and vendtab arrays. There is, however, an additional constraint, which is
that mesh nodes and elements must be ordered consecutively. The solution to fulfill
this constraint in the context of mesh ordering is to keep a set of empty elements
(that is, elements which have no node adjacency attached to them) between the
element and node arrays. For instance, Figure 20 represents a 4-element mesh
with 6 nodes, and such that 4 element vertex slots have been reserved for new
elements and nodes. These slots are empty elements for which verttabl[i] equals
vendtabli], irrespective of these values, since they will not lead to any memory
access in edgetab.

Using this layout of vertices, new nodes and elements can be created by growing
the element and node sub-arrays into the empty element sub-array, by both of
its sides, without having to re-write the whole mesh structure, as illustrated in
Figure 21. Empty elements are transparent to the mesh ordering routines, which
base their work on node vertices only. Users who want to update the arrays of a mesh
that has already been declared using the SCOTCH.meshBuild () routine must call
SCOTCH.meshExit () prior to updating the mesh arrays, and then call SCOTCH_
meshBuild () again after the arrays have been updated, so that the SCOTCH_
Mesh structure remains consistent with the new mesh data.

61

vel nbas
vnodbas
vel mbr
vnodnbr [6]
edgenbr
vlibltab -
vel ot ab

verttab [1]2]5] 8] 912 0] o] o] 0[13]16]1922]

j

edgetab [111112l1d11]12141313141214 1] 2[3[5[2 J 4§ F 3 6 &

vendtab [2]5] 8] 9[1213 0] o] 0] 0]16]1922]25]

Lt

Figure 20: Sample mesh and its description by LIBSCOTCH arrays, with nodes
numbered first and elements numbered last. In order to allow for dynamic re-
meshing, empty elements (in grey) have been inserted between existing node and
element vertices.

vel mbas [9]
vnodbas
vel mbr [6]
vnodnbr

edgenbr

vibltab

velotab |-

verttab [25]2]5] 8[27]1231] 0] 9]35]13]16]1922]

1 !

edgetab [[11]1213] d10[14/13 1] 7] 3]14]

m—

\ \
vendt ab [27]5] 8] 9[31[1335] 0]12[38]16]19]22]25]

[2] 7] f 2744933 6 %1 @314121011/9[12[10/ 7] 3 §

Figure 21: Re-meshing of the mesh of Figure 20. New node vertices have been added
at the end of the vertex sub-array, new elements have been added at the beginning
of the element sub-array, and vertex base values have been updated accordingly.
Node adjacency lists that could not fit in place have been added at the end of the
edge array, and some of the freed space has been re-used for new adjacency lists.
Element adjacency lists do not require moving in this case, as all of the elements
have the name number of nodes.

62

8.2.4 SCOTCH Geom geometry type

Geometry data is always associated with a graph or a mesh. It is simply made
of a single array of double-precision values which represent the coordinates of the
vertices of a graph, or of the node vertices of a mesh, in vertex order. The fields of
a geometry structure are the following:

dimnnbr
Number of dimensions of the graph or of the mesh, which can be 1, 2, or 3.

geomtab

Array of coordinates. This is an array of double precision values organized as
an array of (x), or (x,y), or (z,y, z) tuples, according to dimnnbr. Coordinates
that are not used (e.g. the z coordinates for a bidimentional object) are not
allocated. Therefore, the z coordinate of some graph vertex i is located at
geomtab [(i — baseval) x dimnnbr + baseval], its y coordinate is located at
geomtab [(i — baseval) * dimnnbr + baseval + 1] if dimnnbr > 2, and its z
coordinate is located at geomtab [(i — baseval) *x dimnnbr + baseval + 2] if
dimnnbr = 3. Whenever the geometry is associated with a mesh, only node
vertices are considered, so the x coordinate of some mesh node vertex ¢, with
vnodbas < i, is located at geomtab [(i — vnodbas) * dimnnbr + baseval], its
y coordinate is located at geomtab[(i — vnodbas) * dimnnbr + baseval + 1]
if dimnnbr > 2, and its z coordinate is located at geomtab [(i — vnodbas) *
dimnnbr + baseval + 2] if dimnnbr = 3.

8.2.5 SCOTCH Ordering block ordering format

Block orderings associated with graphs and meshes are described by means of block
and permutation arrays, made of SCOTCH_Nums, as shown in Figure 22. In order for
all orderings to have the same structure, irrespective of whether they are created
from graphs or meshes, all ordering data indices start from baseval, even when
they refer to a mesh the node vertices of which are labeled from a vnodbas index
such that vnodbas > baseval. Consequently, row indices are related to vertex
indices in memory in the following way: row ¢ is associated with vertex ¢ of the
SCOTCH_Graph structure if the ordering was computed from a graph, and with
node vertex i+ (vnodbas —baseval) of the SCOTCH Mesh structure if the ordering
was computed from a mesh. Block orderings are made of the following data:

permtab
Array holding the permutation of the reordered matrix. Thus, if & =
permtab [i], then row ¢ of the original matrix is now row k of the reordered
matrix, that is, row i is the k' pivot.

peritab
Inverse permutation of the reordered matrix. Thus, if ¢ = peritab[k], then
row k of the reordered matrix was row 4 of the original matrix.

cblknbr
Number of column blocks (that is, supervariables) in the block ordering.

rangtab
Array of ranges for the column blocks. Column block ¢, with baseval < ¢ <
(cblknbr+baseval), contains columns with indices ranging from rangtab [4]
to rangtab[7 4+ 1], exclusive, in the reordered matrix. Indices in rangtab

63

perntab [2]3]10] g 4[11] g 7] 112[5] 9]

1 2 3 4 (2 3
peritab [o[1] 2] 5[11] 4] 8] 7[12[3] 6]10]
cbl knbr 5 6 7 8 4]
rangtab [1[2[4[5[g 8ltoag [[[[| ’ T
teetan [3[a[7[@67 [[[[] O O U2 a0y

Figure 22: Arrays resulting from the ordering by complete nested dissection of a 4
by 3 grid based from 1. Leftmost grid is the original grid, and righmost grid is the
reordered grid, with separators shown and column block indices written in bold.

are based. Therefore, rangtab[baseval] is always equal to baseval, and
rangtab [cblknbr+baseval] is always equal to vertnbr+baseval for graphs
and to vnodnbr + baseval for meshes. In order to avoid memory errors when
column blocks are all single columns, the size of rangtab must always be
one more than the number of columns, that is, vertnbr + 1 for graphs and
vnodnbr + 1 for meshes.

treetab

Array of ascendants of permuted column blocks in the separators tree.
treetab[i] is the index of the father of column block ¢ in the separators
tree, or —1 if column block 7 is the root of the separators tree. Whenever sep-
arators or leaves of the separators tree are split into sub-blocks, as the block
splitting, minimum fill or minimum degree methods do, all sub-blocks of the
same level are linked to the column block of higher index belonging to the
closest separator ancestor. Indices in treetab are based, in the same way as
for the other blocking structures. See Figure 22 for a complete example.

8.3 Strategy strings

The behavior of the mapping and block ordering routines of the LIBSCOTCH library
is parametrized by means of strategy strings, which describe how and when given
partitioning or ordering methods should be applied to graphs and subgraphs, or to
meshes and submeshes.

8.3.1 Using default strategy strings

While strategy strings can be built by hand, according to the syntax given in the
next sections, users who do not have specific needs can take advantage of default
strategies already implemented in the LIBSCOTCH, which will yield very good results
in most cases. By doing so, they will spare themselves the hassle of updating their
strategies to comply to subsequent syntactic changes, and they will benefit from the
availability of new partitioning or ordering methods as soon as they are released.
The simplest way to use default strategy strings is to avoid specifying any. By
initializing a strategy object, by means of the SCOTCH_stratInit routine, and
by using the initialized strategy object as is, without further parametrization, this
object will be filled with a default strategy when passing it as a parameter to the
next partitioning or ordering routine to be called. On return, the strategy object
will contain a fully specified strategy, tailored for the type of operation which has
been requested. Consequently, a fresh strategy object that was used to partition

64

a graph cannot be used afterward as a default strategy when calling an ordering
routine, for instance, as partitioning and ordering strategies are incompatible.

The LIBSCOTCH also provides helper routines which allow users to express their
preferences on the kind of strategy that they need. These helper routines, which
are of the form SCOTCH_strat«Build (see Section 8.16.2 and after), tune default
strategy strings according to parameters provided by the user, such as the requested
number of parts (used as a hint to select the most efficient partitioning routines),
the desired maximum load imbalance ratio, and a set of preference flags. While
some of these flags are antagonistic, most of them can be combined, by means of
addition or “binary or” operators. These flags are the following. They are grouped
by application class.

Global flags

SCOTCH_STRATDEFAULT
Default behavior. No flags are set.

SCOTCH_STRATBALANCE
Enforce load balance as much as possible.

SCOTCH_STRATQUALITY
Privilege quality over speed.

SCOTCH_STRATSAFETY
Do not use methods that can lead to the occurrence of problematic events,
such as floating point exceptions, which could not be properly handled by the
calling software.

SCOTCH_STRATSPEED
Privilege speed over quality.

Mapping and partitioning flags

SCOTCH_STRATRECURSIVE
Use only recursive bipartitioning methods, and not direct k-way methods.
When this flag is not set, any combination of methods can be used, so as to
achieve the best result according to other user preferences.

SCOTCH_STRATREMAP
Use the strategy for remapping an existing partition.

Ordering flags

SCOTCH_STRATDISCONNECTED
Find and handle independently disconnected components.

SCOTCH_STRATLEVELMAX
Create at most the prescribed levels of nested dissection separators.

SCOTCH_STRATLEVELMIN
Create at least the prescribed levels of nested dissection separators. When
used in conjunction with SCOTCH_STRATLEVELMAX, the exact number of
nested dissection levels will be performed, unless the graph to order is too
small.

65

SCOTCH_STRATLEAFSIMPLE
Order nested dissection leaves as cheaply as possible.

SCOTCH_STRATSEPASIMPLE
Order nested dissection separators as cheaply as possible.

8.3.2 Mapping strategy strings

At the time being, mapping methods only apply to graphs, as there is not yet a
mesh mapping tool in the SCOTCH package.

Mapping strategies are made of methods, with optional parameters en-
closed between curly braces, and separated by commas, in the form of
method[{parameters}] . The currently available mapping methods are the follow-
ing.

b Band method. This method builds a band graph of given width around the
current frontier of the k-way partition to which it is applied, and calls a graph
mapping strategy to refine the equivalent k-way partition of the band graph.
Then, the refined frontier of the band graph is projected back to the current
graph. This method was initially presented in [9] in the case of bipartitioning.
The parameters of the band bipartitioning method are listed below.

bnd=strat
Set the graph mapping strategy to be used on the band graph.

org=strat

Set the fallback graph mapping strategy to be used on the original graph
if the band graph strategy could not be used. The three cases which
require the use of this fallback strategy are the following. First, if the
separator of the original graph is empty, which makes it impossible to
compute a band graph. Second, if any part of the band graph to be
built is of the same size as the one of the original graph. Third, if the
application of the bnd bipartitioning method to the band graph leads to
a situation where any two anchor vertices are placed in the same part.

width=val
Set the width of the band graph. All graph vertices that are at a distance
less than or equal to val from any frontier vertex are kept in the band
graph.

d Diffusion method. This method, presented in [44] in the case of bipartitioning,
flows k kinds of antagonistic liquids from k source vertices, and sets the new
frontier as the limit between vertices which contain different kinds of liquids.
Because selecting the source vertices is essential to the obtainment of useful
results, this method has been hard-coded so that the k source vertices are the
k vertices of highest indices, since in the band method these are the anchor
vertices which represent all of the removed vertices of each part. Therefore,
this method must be used on band graphs only, or on specifically crafted
graphs. Applying it to any other graphs is very likely to lead to extremely
poor results. The physical analogy of this method loses weight when it is
applied to target architectures that are not complete graphs. The parameters
of the diffusion mapping method are listed below.

dif=rat
Fraction of liquid which is diffused to neighbor vertices at each pass. To

66

achieve convergence, the sum of the dif and rem parameters must be
equal to 1, but in order to speed-up the diffusion process, other combi-
nations of higher sum can be tried. In this case, the number of passes
must be kept low, to avoid numerical overflows which would make the
results useless.

pass=nbr
Set the number of diffusion sweeps performed by the algorithm. This
number depends on the width of the band graph to which the diffusion
method is applied. Useful values range from 30 to 500 according to
chosen dif and rem coefficients.

rem=rat
Fraction of liquid which remains on vertices at each pass. See above.

k-way Fiduccia-Mattheyses method. The parameters of the Fiduccia-
Mattheyses method are listed below.

bal=rat
Set the maximum weight imbalance ratio to the given fraction of the
subgraph vertex weight. Common values are around 0.01, that is, one
percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before
a pass ends. During each of its passes, the Fiduccia-Mattheyses algo-
rithm repeatedly swaps vertices between parts so as to minimize the cost
function. A pass completes either when all of the vertices have been
moved once, or if too many swaps that do not decrease the value of the
cost function have been performed. Setting this value to zero turns the
Fiduccia-Mattheyses algorithm into a gradient-like method, which may
be used to quickly refine partitions during the uncoarsening phase of the
multilevel method.

pass=nbr
Set the maximum number of optimization passes performed by the algo-
rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has
not yielded any improvement of the cost function, or when the maximum
number of passes has been reached. Value —1 stands for an infinite num-
ber of passes, that is, as many as needed by the algorithm to converge.

Multilevel method. The parameters of the multilevel method are listed below.

asc=strat
Set the strategy that is used to refine the mappings obtained at ascending
levels of the uncoarsening phase by projection of the mappings computed
for coarser graphs. This strategy is not applied to the coarsest graph,
for which only the 1ow strategy is used.

low=strat
Set the strategy that is used to compute the mapping of the coarsest
graph, at the lowest level of the coarsening process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs are no
longer coarsened. The ratio of any given coarsening cannot be less that

67

0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-
ening stops when either the coarsening ratio is above the maximum coars-
ening ratio, or the graph has fewer vertices than the minimum number
of vertices allowed.

vert=nbr

Set the threshold under which graphs are no longer coarsened. Coarsen-
ing stops when either the coarsening ratio is above the maximum coars-
ening ratio, or the graph would have fewer vertices than the minimum
number of vertices allowed. When the target architecture is a variable-
sized architecture, coarsening stops when the coarsened graph would have
less than nbr vertices. When the target architecture is a regular, fixed-
size, architecture, coarsening stops when each subdomain would have less
than nbr vertices, that is, when the size of the coarsened graph would
have less than nbr x domnnbr vertices, where domnnbr is the number of
vertices in the target architecture.

r Dual Recursive Bipartitioning mapping algorithm, as defined in section 3.2.
The parameters of the DRB mapping method are listed below.

Jjob=tie

The tie flag defines how new jobs are stored in job pools.

t Tie job pools together. Subjobs are stored in same pool as their par-
ent job. This is the default behavior, as it proves the most efficient
in practice.

u Untie job pools. Subjobs are stored in the next job pool to be pro-
cessed.

map=tie

The tie flag defines how results of bipartitioning jobs are propagated to

jobs still in pools.

t Tie both mapping tables together. Results are immediately available
to jobs in the same job pool. This is the default behavior.

u Untie mapping tables. Results are only available to jobs of next pool
to be processed.

poli=policy

Select jobs according to policy policy. Job selection policies define how

bipartitioning jobs are ordered within the currently active job pool. Valid

policy flags are

L Most neighbors of higher level.

1 Highest level.
r Random.
S Most neighbors of smaller size. This is the default behavior.
s Biggest size.
sep=strat

Apply bipartitioning strategy strat to each bipartitioning job. A biparti-
tioning strategy is made of one or several bipartitioning methods, which
can be combined by means of strategy operators. Graph bipartitioning
strategies are described below.

x Exactifier method, as defined in Section 3.3. This greedy algorithm refines the
current mapping so as to reduce load imbalance as much as possible. Since

68

this method does not consider communication minimization, its use should be
restricted to cases where achieving load balance is critical and where recursive
bipartitioning may fail to achieve it, because of very irregular vertex loads.

8.3.3 Graph bipartitioning strategy strings

A graph bipartitioning strategy is made of one or several graph bipartitioning meth-
ods, which can be combined by means of strategy operators. Strategy operators are
listed below, by increasing precedence.

stratl | strat?2
Selection operator. The result of the selection is the best bipartition of the
two that are obtained by the separate application of strat! and strat2 to the
current bipartition.

stratl strat2
Combination operator. Strategy strat2 is applied to the bipartition resulting
from the application of strategy strat! to the current bipartition. Typically,
the first method used should compute an initial bipartition from scratch, and
every following method should use the result of the previous one at its starting
point.

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single bipartitioning method.

/ cond? stratl|[: strat2);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current active graph, and can be built from logical
and relational operators. Conditional operators are listed below, by increasing
precedence.

condl | cond2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

condl & cond?2
Logical and operator. The result of the condition is true only if both
condl and cond?2 are true.

!cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a graph variable, val is either a graph
variable or a constant of the type of variable var, and relop is one of '<’,
'=""and ’>’. The graph variables are listed below, along with their types.

deg
The average degree of the current graph. Float.

edge
The number of arcs (which is twice the number of edges) of the
current graph. Integer.

69

load
The overall vertex load (weight) of the current graph. Integer.
load0
The vertex load of the first subset of the current bipartition of the
current graph. Integer.
vert
The number of vertices of the current graph. Integer.

method[{parameters}|

Bipartitioning method. For bipartitioning methods that can be parametrized,
parameter settings may be provided after the method name. Parameters must
be separated by commas, and the whole list be enclosed between curly braces.

The currently available graph bipartitioning methods are the following.

b

Band method. This method builds a band graph of given width around the
current frontier of the graph to which it is applied, and calls a graph biparti-
tioning strategy to refine the equivalent bipartition of the band graph. Then,
the refined frontier of the band graph is projected back to the current graph.
This method, presented in [9], was created to reduce the cost of vertex sepa-
rator refinement algorithms in a multilevel context, but it improves partition
quality too. The same behavior is observed for graph bipartitioning. The
parameters of the band bipartitioning method are listed below.

bnd=strat
Set the graph bipartitioning strategy to be used on the band graph.

org=strat

Set the fallback graph bipartitioning strategy to be used on the original
graph if the band graph strategy could not be used. The three cases
which require the use of this fallback strategy are the following. First, if
the separator of the original graph is empty, which makes it impossible
to compute a band graph. Second, if any part of the band graph to be
built is of the same size as the one of the original graph. Third, if the
application of the bnd bipartitioning method to the band graph leads to
a situation where both anchor vertices are placed in the same part.

width=val
Set the width of the band graph. All graph vertices that are at a distance
less than or equal to wal from any frontier vertex are kept in the band
graph.

Diffusion method. This method, presented in [44], flows two kinds of antag-
onistic liquids, scotch and anti-scotch, from two source vertices, and sets the
new frontier as the limit between vertices which contain scotch and the ones
which contain anti-scotch. Because selecting the source vertices is essential
to the obtainment of useful results, this method has been hard-coded so that
the two source vertices are the two vertices of highest indices, since in the
band method these are the anchor vertices which represent all of the removed
vertices of each part. Therefore, this method must be used on band graphs
only, or on specifically crafted graphs. Applying it to any other graphs is
very likely to lead to extremely poor results. The parameters of the diffusion
bipartitioning method are listed below.

70

dif=rat
Fraction of liquid which is diffused to neighbor vertices at each pass. To
achieve convergence, the sum of the dif and rem parameters must be
equal to 1, but in order to speed-up the diffusion process, other combi-
nations of higher sum can be tried. In this case, the number of passes
must be kept low, to avoid numerical overflows which would make the
results useless.

pass=nbr
Set the number of diffusion sweeps performed by the algorithm. This
number depends on the width of the band graph to which the diffusion
method is applied. Useful values range from 30 to 500 according to
chosen dif and rem coefficients.

rem=rat
Fraction of liquid which remains on vertices at each pass. See above.

Fiduccia-Mattheyses method. The parameters of the Fiduccia-Mattheyses
method are listed below.

bal=rat
Set the maximum weight imbalance ratio to the given fraction of the
subgraph vertex weight. Common values are around 0.01, that is, one
percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before a
pass ends. During each of its passes, the Fiduccia-Mattheyses algorithm
repeatedly swaps vertices between the two parts so as to minimize the
cost function. A pass completes either when all of the vertices have been
moved once, or if too many swaps that do not decrease the value of the
cost function have been performed. Setting this value to zero turns the
Fiduccia-Mattheyses algorithm into a gradient-like method, which may
be used to quickly refine partitions during the uncoarsening phase of the
multilevel method.

pass=nbr
Set the maximum number of optimization passes performed by the algo-
rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has
not yielded any improvement of the cost function, or when the maximum
number of passes has been reached. Value —1 stands for an infinite num-
ber of passes, that is, as many as needed by the algorithm to converge.

Gibbs-Poole-Stockmeyer method. This method has only one parameter.

pass=nbr
Set the number of sweeps performed by the algorithm.

Greedy-graph-growing method. This method has only one parameter.

pass=nbr
Set the number of runs performed by the algorithm.

Multilevel method. The parameters of the multilevel method are listed below.

asc=strat
Set the strategy that is used to refine the partitions obtained at ascend-
ing levels of the uncoarsening phase by projection of the bipartitions

71

computed for coarser graphs. This strategy is not applied to the coarsest
graph, for which only the 1ow strategy is used.

low=strat
Set the strategy that is used to compute the partition of the coarsest
graph, at the lowest level of the coarsening process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs are no
longer coarsened. The ratio of any given coarsening cannot be less that
0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-
ening stops when either the coarsening ratio is above the maximum coars-
ening ratio, or the graph has fewer vertices than the minimum number
of vertices allowed.

vert=nbr
Set the threshold minimum graph size under which graphs are no longer
coarsened. Coarsening stops when either the coarsening ratio is above
the maximum coarsening ratio, or the coarsened graph would have fewer
vertices than the minimum number of vertices allowed.

x Exactifying method.

V4 Zero method. This method moves all of the vertices to the first part. Its
main use is to stop the bipartitioning process, if some condition is true, when
mapping onto variable-sized architectures (see section 3.2.3).

8.3.4 Vertex partitioning (with overlap) strategy strings

Vertex partitioning is a special form of graph partitioning, in which graphs are
partitioned into a prescribed number of parts by means of vertex separators rather
than of edge separators like in Section 8.3.2. The load balance criterion also differs
from common practice: the load to be balanced across all parts comprises not
only the load of the vertices which belong to the part, but also the load of all the
separator vertices which are their immediate neighbors. Consequently, the load
of every separator vertex is accounted for several times, in each of the parts it
separates.

Vertex partitioning strategies are made of methods, with optional parame-
ters enclosed between curly braces, and separated by commas, in the form of
method[{parameters}] . The currently available mapping methods are the follow-
ing.

e K-way edge partitioning method. The parameters of the Fiduccia-Mattheyses
method are listed below.

strat=strat
K-way partitioning strategy to be performed. It is in fact a k-way map-
ping strategy, that is applied to a complete target graph of as many ver-
tices as the prescribed number of parts. The syntax of mapping strategy
strings is defined in Section 8.3.2.

f Fiduccia-Mattheyses method. The parameters of the Fiduccia-Mattheyses
method are listed below.

bal=rat
Set the maximum weight imbalance ratio to the given fraction of the

72

subgraph vertex weight. Common values are around 0.01, that is, one
percent.

move=nbr

Maximum number of hill-climbing moves that can be performed before
a pass ends. During each of its passes, the Fiduccia-Mattheyses algo-
rithm repeatedly moves vertices between parts so as to minimize the
cost function. A pass completes either when all of the vertices have been
moved once, or if too many swaps that do not decrease the value of the
cost function have been performed. Setting this value to zero turns the
Fiduccia-Mattheyses algorithm into a gradient-like method, which may
be used to quickly refine partitions during the uncoarsening phase of the
multilevel method.

pass=nbr
Set the maximum number of optimization passes performed by the algo-
rithm. The Fiduccia-Mattheyses algorithm stops as soon as a pass has
not yielded any improvement of the cost function, or when the maximum
number of passes has been reached. Value —1 stands for an infinite num-
ber of passes, that is, as many as needed by the algorithm to converge.

Greedy-graph-growing method. This is a k-way version of the original algo-
rithm, in which parts are grown one after the other. Consequently, depending
on graph topology, this method is likely to yield disconnected parts, with
higher probability as the number of part increases. This method has only one
parameter.

pass=nbr
Set the number of runs performed by the algorithm.

Multilevel method. The parameters of the multilevel method are listed below.

asc=strat
Set the strategy that is used to refine the partitions obtained at ascend-
ing levels of the uncoarsening phase by projection of the bipartitions
computed for coarser graphs. This strategy is not applied to the coarsest
graph, for which only the 1ow strategy is used.

low=strat
Set the strategy that is used to compute the partition of the coarsest
graph, at the lowest level of the coarsening process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs are no
longer coarsened. The ratio of any given coarsening cannot be less that
0.5 (case of a perfect matching), and cannot be greater than 1.0. Coars-
ening stops when either the coarsening ratio is above the maximum coars-
ening ratio, or the graph has fewer vertices than the minimum number
of vertices allowed.

vert=nbr
Set the threshold minimum number of vertices per part under which
graphs are no longer coarsened. Coarsening stops when either the coars-
ening ratio is above the maximum coarsening ratio, or the graph has
fewer vertices than the minimum number of vertices allowed.

73

r Recursive bipartitioning algorithm. The parameters of the recursive biparti-
tioning method are listed below.

sep=strat
Apply vertex (node) separation strategy strat to each bipartitioning job.
A node separation strategy is made of one or several node separation
methods, which can be combined by means of strategy operators. Node
separation strategies are described in Section 8.3.6.

8.3.5 Ordering strategy strings

Ordering strategies are available both for graphs and for meshes. An ordering
strategy is made of one or several ordering methods, which can be combined by
means of strategy operators. The strategy operators that can be used in ordering
strategies are listed below, by increasing precedence.

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single ordering method.

/ cond? stratl|[: strat2);
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current node of the separators tree, and can be
built from logical and relational operators. Conditional operators are listed
below, by increasing precedence.

condl | cond?2
Logical or operator. The result of the condition is true if cond1 or cond?2
are true, or both.

condl1&cond2
Logical and operator. The result of the condition is true only if both
condl and cond?2 are true.

! cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a node variable, val is either a node
variable or a constant of the type of variable var, and relop is one of '<’,
'=""and ">’. The node variables are listed below, along with their types.
edge
The number of vertices of the current subgraph. Integer.
levl
The level of the subgraph in the separators tree, starting from zero
for the initial graph at the root of the tree. Integer.
load
The overall vertex load (weight) of the current subgraph. Integer.
mdeg
The maximum degree of the current subgraph. Integer.
vert
The number of vertices of the current subgraph. Integer.

74

method[{ parameters}|

Graph or mesh ordering method. Available ordering methods are listed below.

The currently available ordering methods are the following.

b

Blocking method. This method does not perform ordering by itself, but is used
as post-processing to cut into blocks of smaller sizes the separators or large
blocks produced by other ordering methods. This is not useful in the context of
direct solving methods, because the off-diagonal blocks created by the splitting
of large diagonal blocks are likely to be filled at factoring time. However, in
the context of incomplete solving methods such as ILU(k) [31], it can lead
to a significant reduction of the required memory space and time, because it
helps carving large triangular blocks. The parameters of the blocking method
are described below.

cmin=wght
Set the minimum span of the resulting sub-blocks, in terms of column
weights. When the graph has no vertex weights (that is, all columns
have weight 1), cmin represents the minimum number of colums to be
included within each sub-block. For unweighted graphs, blocks larger
than twice this minimum weight are cut into sub-blocks of equal sizes
(within one), having a number of columns comprised between wght and
2wght. For weighted graphs, the algorithm performs in a best effort to
achieve this goal.
The definition of size depends on the size of the graph to order. Large
graphs cannot afford very small values, because the number of blocks
becomes much too large and limits the acceleration of BLAS 3 routines,
while large values do not help reducing enough the complexity of ILU(k)
solving.

strat=strat
Ordering strategy to be performed. After the ordering strategy is applied,
the resulting separators tree is traversed and all of the column blocks
that are larger than 2size are split into smaller column blocks, without
changing the ordering that has been computed.

Compression method [2]. The parameters of the compression method are
listed below.

rat=rat
Set the compression ratio over which graphs and meshes will not be
compressed. Useful values range between 0.7 and 0.8.

cpr=strat
Ordering strategy to use on the compressed graph or mesh if its size is
below the compression ratio times the size of the original graph or mesh.

unc=strat
Ordering strategy to use on the original graph or mesh if the size of the
compressed graph or mesh were above the compression ratio times the
size of the original graph or mesh.

Block Halo Approximate Minimum Degree method [49]. The parameters of
the Halo Approximate Minimum Degree method are listed below. The Block
Halo Approximate Minimum Fill method, described below, is more efficient
and should be preferred.

75

cmin=wght
Minimum weight per column block. All column blocks of weight smaller
than wght are amalgamated to their parent column block in the elimina-
tion tree, provided that it does not violate the cmax constraint.

cmax=wght
Maximum weight over which a column block will not amalgamate one
of its descendents in the elimination tree. This parameter is mainly
designed to provide an upper bound for block size in the context of
BLAS3 computations ; else, a huge value should be provided.

frat=rat
Fill-in ratio over which some column block will not amalgamate one of
its descendents in the elimination tree. Typical values range from 0.05
to 0.10.

Block Halo Approximate Minimum Fill method. The parameters of the Halo
Approximate Minimum Fill method are listed below.

cmin=wght
Minimum weight per column block. All column blocks of weight smaller
than wght are amalgamated to their parent column block in the elimina-
tion tree, provided that it does not violate the cmax constraint.

cmax=size
Maximum weight over which a column block will not amalgamate one
of its descendents in the elimination tree. This parameter is mainly
designed to provide an upper bound for block size in the context of
BLAS3 computations ; else, a huge value should be provided.

frat=rat
Fill-in ratio over which some column block will not amalgamate one of
its descendents in the elimination tree. Typical values range from 0.05
to 0.10.

Gibbs-Poole-Stockmeyer method. This method is used on separators to re-
duce the number and extent of extra-diagonal blocks. If the number of extra-
diagonal blocks is not relevant, the s method should be preferred. This
method has only one parameter.

pass=nbr
Set the number of sweeps performed by the algorithm.

Nested dissection method. The parameters of the nested dissection method
are given below.

ole=strat
Set the ordering strategy that is used on every leaf of the separators tree
if the node separation strategy sep has failed to separate it further.

ose=strat
Set the ordering strategy that is used on every separator of the separators
tree.

sep=strat
Set the node separation strategy that is used on every leaf of the sep-
arators tree to make it grow. Node separation strategies are described
below, in section 8.3.6.

76

o Disconnected subgraph detection method. This method is used at the global
level to search for connected components, and run independently the provided
graph ordering strategy on each of them.

strat=strat
Ordering strategy to apply to each of the connected components.

s Simple method. Vertices are ordered in their natural order. This method is
fast, and should be used to order separators if the number of extra-diagonal
blocks is not relevant ; else, the g method should be preferred.

v Mesh-to-graph method. Available only for mesh ordering strategies. From the
mesh to which this method applies is derived a graph, such that a graph vertex
is associated with every node of the mesh, and a clique is created between all
vertices which represent nodes that belong to the same element. A graph
ordering strategy is then applied to the derived graph, and this ordering is
projected back to the nodes of the mesh. This method is here for evaluation
purposes only, as mesh ordering methods are generally more efficient than
their graph ordering counterpart.

strat=strat
Graph ordering strategy to apply to the associated graph.

8.3.6 Node separation strategy strings

A node separation strategy is made of one or several node separation methods,
which can be combined by means of strategy operators. Strategy operators are
listed below, by increasing precedence.

stratl | strat2
Selection operator. The result of the selection is the best vertex separator of
the two that are obtained by the distinct application of strat! and strat2 to
the current separator.

stratl strat2
Combination operator. Strategy strat2 is applied to the vertex separator
resulting from the application of strategy strat! to the current separator.
Typically, the first method used should compute an initial separation from
scratch, and every following method should use the result of the previous one
as a starting point.

(strat)
Grouping operator. The strategy enclosed within the parentheses is treated
as a single separation method.

/ cond ? stratl [: strat2];
Condition operator. According to the result of the evaluation of condition
cond, either stratl or strat2 (if it is present) is applied. The condition applies
to the characteristics of the current subgraph, and can be built from logical
and relational operators. Conditional operators are listed below, by increasing
precedence.

condl | cond2
Logical or operator. The result of the condition is true if cond! or cond?2
are true, or both.

7

condl1&cond2
Logical and operator. The result of the condition is true only if both
condl and cond2 are true.

! cond
Logical not operator. The result of the condition is true only if cond is
false.

var relop val
Relational operator, where var is a graph or node variable, val is either
a graph or node variable or a constant of the type of variable var, and

relop is one of ’<’, '="_ and ’>’. The graph and node variables are listed
below, along with their types.
levl

The level of the subgraph in the separators tree, starting from zero
at the root of the tree. Integer.

proc
The number of processors on which the current subgraph is dis-
tributed at this level of the separators tree. This variable is available
only when calling from routines of the PT-ScoTcCH parallel library.
Integer.

rank
The rank of the current processor among the group of processors
on which the current subgraph is distributed at this level of the
separators tree. This variable is available only when calling from
routines of the PT-SCcOTCH parallel library, for instance to decide
which node separation strategy should be used on which processor
in a multi-sequential approach. Integer.

vert
The number of vertices of the current subgraph. Integer.

The currently available vertex separation methods are the following.

b

Band method. Available only for graph separation strategies. This method
builds a band graph of given width around the current separator of the graph
to which it is applied, and calls a graph separation strategy to refine the
equivalent separator of the band graph. Then, the refined separator of the
band graph is projected back to the current graph. This method, presented
in [9], was created to reduce the cost of separator refinement algorithms in a
multilevel context, but it improves partition quality too. The parameters of
the band separation method are listed below.

bnd=strat
Set the vertex separation strategy to be used on the band graph.

org=strat

Set the fallback vertex separation strategy to be used on the original
graph if the band graph strategy could not be used. The three cases
which require the use of this fallback strategy are the following. First, if
the separator of the original graph is empty, which makes it impossible
to compute a band graph. Second, if any part of the band graph to be
built is of the same size as the one of the original graph. Third, if the
application of the bnd vertex separation method to the band graph leads
to a situation where both anchor vertices are placed in the same part.

78

width=val
Set the width of the band graph. All graph vertices that are at a distance
less than or equal to val from any separator vertex are kept in the band
graph.

Edge-separation method. Available only for graph separation strategies. This
method builds vertex separators from edge separators, by the method pro-
posed by Pothen and Fang [51], which uses a variant of the Hopcroft and
Karp algorithm due to Duff [10]. This method is expensive and most often
yields poorer results than direct vertex-oriented methods such as the vertex
vertex Greedy-graph-growing and the vertex Fiduccia-Mattheyses algorithms.
The parameters of the edge-separation method are listed below.

bal=wval
Set the load imbalance tolerance to wal, which is a floating-point ratio
expressed with respect to the ideal load of the partitions.

strat=strat
Set the graph bipartitioning strategy that is used to compute the edge
bipartition. The syntax of bipartitioning strategy strings is defined in
Section 8.3.3.

width=type
Select the width of the vertex separators built from edge separators.
When type is set to £, fat vertex separators are built, that hold all of
the ends of the edges of the edge cut. When it is set to t, a thin vertex
separator is built by removing as many vertices as possible from the fat
separator.

Vertex Fiduccia-Mattheyses method. The parameters of the vertex Fiduccia-
Mattheyses method are listed below.

bal=rat
Set the maximum weight imbalance ratio to the given fraction of the
weight of all node vertices. Common values are around 0.01, that is, one
percent.

move=nbr
Maximum number of hill-climbing moves that can be performed before
a pass ends. During each of its passes, the vertex Fiduccia-Mattheyses
algorithm repeatedly moves vertices from the separator to any of the two
parts, so as to minimize the size of the separator. A pass completes either
when all of the vertices have been moved once, or if too many swaps that
do not decrease the size of the separator have been performed.

pass=nbr
Set the maximum number of optimization passes performed by the al-
gorithm. The vertex Fiduccia-Mattheyses algorithm stops as soon as a
pass has not yielded any reduction of the size of the separator, or when
the maximum number of passes has been reached. Value -1 stands for an
infinite number of passes, that is, as many as needed by the algorithm
to converge.

Gibbs-Poole-Stockmeyer method. Available only for graph separation strate-
gies. This method has only one parameter.

79

pass=nbr
Set the number of sweeps performed by the algorithm.

Vertex greedy-graph-growing method. This method has only one parameter.

pass=nbr
Set the number of runs performed by the algorithm.

Vertex multilevel method. The parameters of the vertex multilevel method
are listed below.

asc=strat
Set the strategy that is used to refine the vertex separators obtained at
ascending levels of the uncoarsening phase by projection of the separators
computed for coarser graphs or meshes. This strategy is not applied to
the coarsest graph or mesh, for which only the 1ow strategy is used.

low=strat
Set the strategy that is used to compute the vertex separator of the
coarsest graph or mesh, at the lowest level of the coarsening process.

rat=rat
Set the threshold maximum coarsening ratio over which graphs or meshes
are no longer coarsened. The ratio of any given coarsening cannot be less
that 0.5 (case of a perfect matching), and cannot be greater than 1.0.
Coarsening stops when either the coarsening ratio is above the maximum
coarsening ratio, or the graph or mesh has fewer node vertices than the
minimum number of vertices allowed.

vert=nbr
Set the threshold minimum size under which graphs or meshes are no
longer coarsened. Coarsening stops when either the coarsening ratio is
above the maximum coarsening ratio, or the graph or mesh has fewer
node vertices than the minimum number of vertices allowed.

Thinner method. Available only for graph separation strategies. This method
quickly eliminates all useless vertices of the current separator. It searches the
separator for vertices that have no neighbors in one of the two parts, and moves
these vertices to the part they are connected to. This method may be used
to refine separators during the uncoarsening phase of the multilevel method,
and is faster than a vertex Fiduccia-Mattheyses algorithm with {move=0}.

Mesh-to-graph method. Available only for mesh separation strategies. From
the mesh to which this method applies is derived a graph, such that a graph
vertex is associated with every node of the mesh, and a clique is created
between all vertices which represent nodes that belong to the same element.
A graph separation strategy is then applied to the derived graph, and the
separator is projected back to the nodes of the mesh. This method is here
for evaluation purposes only, as mesh separation methods are generally more
efficient than their graph separation counterpart.

strat=strat
Graph separation strategy to apply to the associated graph.

Graph separator viewer. Available only for graph separation strategies. Every
call to this method results in the creation, in the current subdirectory, of par-
tial mapping files called “vgraphseparatevw_output_nnnnnnnn.map”,

80

where “nnnnnnnn” are increasing decimal numbers, which contain the cur-
rent state of the two parts and the separator. These mapping files can be
used as input by the gout program to produce displays of the evolving shape
of the current separator and parts. This is mostly a debugging feature, but
it can also have an illustrative interest. While it is only available for graph
separation strategies, mesh separation strategies can indirectly use it through
the mesh-to-graph separation method.

z Zero method. This method moves all of the node vertices to the first part,
resulting in an empty separator. Its main use is to stop the separation process
whenever some condition is true.

8.4 Target architecture handling routines

8.4.1 SCOTCH_archAlloc

Synopsis

SCOTCH_Arch * SCOTCH_archAlloc (void)

Description

The SCOTCH_archAlloc function allocates a memory area of a size sufficient
to store a SCOTCH_Arch structure. It is the user’s responsibility to free this
memory when it is no longer needed, using the SCOTCH_memFree routine.
The allocated space must be initialized before use, by means of the SCOTCH_
archInit routine.

Return values

SCOTCH_archAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.4.2 SCOTCH_archExit

Synopsis

void SCOTCH_archExit (SCOTCH_Arch % archptr)

scotchfarchexit (doubleprecision (%) archdat)

Description

The SCOTCH_archExit function frees the contents of a SCOTCH_Arch struc-
ture previously initialized by SCOTCH_archInit. All subsequent calls to
SCOTCH_arch routines other than SCOTCH_archInit, using this structure
as parameter, may yield unpredictable results.

81

8.4.3

SCOTCH_archInit

Synopsis

int SCOTCH_archInit (SCOTCH_Arch % archptr)

scotchfarchinit (doubleprecision (%) archdat,
integer ierr)

Description

The SCOTCH_archInit function initializes a SCOTCH_Arch structure so as
to make it suitable for future operations. It should be the first function
to be called upon a SCOTCH_Arch structure. When the target architecture
data is no longer of use, call function SCOTCH_archExit to free its internal
structures.

Return values

SCOTCH_archInit returns 0O if the architecture structure has been success-
fully initialized, and 1 else.

8.4.4 SCOTCH_archLoad
Synopsis
int SCOTCH.archLoad (SCOTCH_Arch % archptr,
FILE = stream)
scotchfarchload (doubleprecision (%) archdat,
integer fildes,
integer ierr)
Description

The SCOTCH_archLoad routine fills the SCOTCH_Arch structure pointed to
by archptr with the source graph description available from stream st ream
in the SCOTCH target architecture format (see Section 6.4).

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the architecture file.

Return values

8.4.5

SCOTCH-archLoad returns 0 if the target architecture structure has been
successfully allocated and filled with the data read, and 1 else.

SCOTCH_archName

Synopsis

82

const char x SCOTCH._archName (const SCOTCH_Arch * archptr)

scotchfarchname (doubleprecision (%) archdat,
character (%) chartab,
integer charnbr)

Description

The SCOTCH_archName function returns a string containing the name of the
architecture pointed to by archptr. Since Fortran routines cannot return
string pointers, the scotchfarchname routine takes as second and third
parameters a character () array to be filled with the name of the archi-
tecture, and the integer size of the array, respectively. If the array is of
sufficient size, a trailing nul character is appended to the string to materialize
the end of the string (this is the C style of handling character strings).

Return values

SCOTCH_archName returns a non-null character pointer that points to a null-
terminated string describing the type of the architecture.

8.4.6 SCOTCH_archSave

Synopsis

int SCOTCH.archSave (const SCOTCH_Arch x archptr,

FILE = stream)
scotchfarchsave (doubleprecision (%) archdat,
integer fildes,
integer ierr)

Description

The SCOTCH_archSave routine saves the contents of the SCOTCH_Arch
structure pointed to by archptr to stream stream, in the SCOTCH target
architecture format (see section 6.4).

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the architecture file.

Return values

SCOTCH_archSave returns 0 if the graph structure has been successfully
written to stream, and 1 else.

8.4.7 SCOTCH_archSize

Synopsis

SCOTCH.Num SCOTCH._archSize (const SCOTCH_Arch * archptr)

83

scotchfarchsize (doubleprecision (%)

integerxnum

Description

archdat,
archnbr)

The SCOTCH_archSize function returns the number of nodes of the given
target architecture. The Fortran routine has a second parameter, of integer
type, which is set on return with the number of nodes of the target architec-

ture.

Return values

SCOTCH_archSize returns the number of nodes of the target architecture.

8.4.8 SCOTCH_archSizeof

Synopsis

int SCOTCH_archSizeof (void)

scotchfarchsizeof (integer size)

Description

The SCOTCH_archSizeof routine returns the size, in bytes, of a SCOTCH_
Arch structure. This information is useful to export the interface of the LIB-
SCOTCH to interpreted languages, without access to the “scotch.h” include

file.

8.5 Target architecture creation routines

8.5.1 SCOTCH.archBuild0 / SCOTCH.archBuild

Synopsis

int SCOTCH_archBuildO (SCOTCH_Arch =

archptr,

const SCOTCH_Graph % grafptr,

const SCOTCH_Num
const SCOTCH_Num =

listnbr,
listtab,

const SCOTCH_Strat x straptr)

int SCOTCH_archBuild (SCOTCH_Arch =

archptr,

const SCOTCH_-Graph x grafptr,
const SCOTCH_Num

const SCOTCH_Num =
const SCOTCH_Strat

scotchfarchbuild0 (doubleprecision
doubleprecision
integerxnum
integer*xnum (x)
doubleprecision
integer

84

(%)
(%)

(%)

listnbr,
listtab,
* straptr)

archdat,
grafdat,
listnbr,
listtab,
stradat,
ierr)

scotchfarchbuild (doubleprecision (%) archdat,

doubleprecision () grafdat,
integerxnum listnbr,
integerxnum (%) listtab,
doubleprecision (%) stradat,
integer ierr)

Description

The SCOTCH_archBuild0 routine fills the architecture structure pointed to
by archptr with the “deco 1” (that is, a compiled form of a “deco 0”)
decomposition-defined target architecture computed by applying the graph bi-
partitioning strategy pointed to by st raptr to the architecture graph pointed
to by grafptr.

When listptr is not NULL and listnbr is greater than zero, the
decomposition-defined architecture is restricted to the listnbr vertices
whose indices are given in the array pointed to by 1isttab, from listtab
[0] tolisttab[listnbr - 1]. These indices should have the same base
value as the one of the graph pointed to by grafptr, that is, be in the range
from 0 to vertnbr — 1 if the graph base is 0, and from 1 to vertnbr if the
graph base is 1.

Graph bipartitioning strategies are declared by means of the SCOTCH_strat
GraphBipart function, described in page 151. The syntax of bipartitioning
strategy strings is defined in section 8.3.2, page 66. Additional information
may be obtained from the manual page of amk_grf, the stand-alone exe-
cutable that builds decomposition-defined target architecture files from source
graph files, available at page 38.

At the time being, SCOTCH_archBuild is equivalent to SCOTCH_arch
Build0. In future releases, it is planned that SCOTCH_archBuild will ei-
ther behave as SCOTCH_archBuildO or SCOTCH_archBuild2, depending
on target graph size. For target graphs of small sizes, users are invited to use
explicitly the SCOTCH_archBuild0 routine.

Return values

SCOTCH_archBuildO0 returns 0 if the decomposition-defined architecture has
been successfully computed, and 1 else.

8.5.2 SCOTCH_archBuild2

Synopsis
int SCOTCH.archBuild2 (SCOTCH_Arch =« archptr,
const SCOTCH_.Graph x grafptr,
const SCOTCH_Num listnbr,
const SCOTCH_Num =* listtab)
scotchfarchbuild2 (doubleprecision (%) archdat,
doubleprecision (x) grafdat,
integer*num listnbr,
integerxnum (*) listtab,
integer ierr)

85

Description

The SCOTCH_archBuild2 routine fills the architecture structure pointed to
by archptr with the “deco 2” decomposition-defined target architecture
corresponding to the graph pointed to by grafptr. Since the computation of
the decomposition is performed by means of graph coarsening, unlike SCOTCH_
archBuild, no bipartitioning strategy has to be provided.

When listptr is not NULL and listnbr is greater than zero, the
decomposition-defined architecture is restricted to the listnbr vertices
whose indices are given in the array pointed to by 1isttab, from listtab
[0] to listtab[listnbr — 1]. These indices should have the same base
value as that of the graph pointed to by grafptr, that is, be in the range
from 0 to vertnbr — 1 if the graph base is 0, and from 1 to vertnbr if the
graph base is 1.

Additional information may be obtained from the manual page of amk _grf,
the stand-alone executable that builds decomposition-defined target architec-
ture files from source graph files, available at page 38.

Return values

SCOTCH_archBuild returns 0 if the decomposition-defined architecture has
been successfully computed, and 1 else.

SCOTCH-archCmplt

Synopsis
int SCOTCH.archCmplt (SCOTCH_Arch = archptr,
const SCOTCH-Num vertnbr)
scotchfarchcmplt (doubleprecision (%) archdat,
integerxnum vertnbr,
integer ierr)
Description

The SCOTCH_archCmplt routine fills the SCOTCH Arch structure pointed
to by archptr with the description of a complete graph architecture with
vertnbr processors, which can be used as input to SCOTCH_graphMap to
perform graph partitioning. A shortcut to this is to use the SCOTCH_graph
Part routine.

Return values

SCOTCH_archCmplt returns 0 if the complete graph target architecture has
been successfully built, and 1 else.

8.5.4 SCOTCH_archCmpltw

Synopsis

86

int SCOTCH._archCmpltw (SCOTCH_Arch = archptr,
const SCOTCH_Num vertnbr,
const SCOTCH_Num velotab)

scotchfarchcmplt (doubleprecision (%) archdat,
integerxnum vertnbr,
integer*num (%) velotab,
integer ierr)
Description

The SCOTCH_archCmpltw routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a weighted complete graph architecture
with vertnbr processors. The relative weights of the processors are given in
the velotab array. Once the target architecture has been created, it can be
used as input to SCOTCH_graphMap to perform weighted graph partitioning.

Return values

SCOTCH_archCmpltw returns 0 if the weighted complete graph target archi-
tecture has been successfully built, and 1 else.

8.5.5 SCOTCH_archHcub

Synopsis
int SCOTCH_archHcub (SCOTCH_Arch = archptr,
const SCOTCHNum hdimval)
scotchfarchhcub (doubleprecision (%) archdat,
integer*num hdimval,
integer ierr)
Description

The SCOTCH_archHcub routine fills the SCOTCH_Arch structure pointed to
by archptr with the description of a hypercube graph architecture of dimen-
sion hdimval.

Return values
SCOTCH_archHcub returns 0 if the hypercube target architecture has been
successfully built, and 1 else.

8.5.6 SCOTCH_archLtleaf

Synopsis

87

int SCOTCH._archLtleaf (SCOTCH_Arch =

archptr,

const SCOTCH_Num levlnbr,
const SCOTCH.-Num * sizetab,
const SCOTCH Num » linktab,
const SCOTCH_Num permnbr,
const SCOTCH-Num * permtab)
scotchfarchltleaf (doubleprecision (x) archdat,
integerxnum levlnbr,
integerxnum (*) sizetab,
integerxnum (%) linktab,
integerxnum permnbr,
integerxnum (*) permtab,
integer ierr)
Description

The SCOTCH_archLtleaf routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a labeled, tree-shaped, hierarchical
graph architecture with Zi‘glnbr*l sizetab[i] processors. Level 0 is the
root, of the tree. For each level i, with 0 < ¢ < levlnbr, sizetab[¢] is the
number of childs at level (i 4+ 1) of each node at level i, and 1inktab[i] is
the cost of communication between processors the first common ancestor of

which belongs to this level. See Section 6.4.2, page 29, for an example of this

architecture.

Return values

SCOTCH-archLtleaf returns O if the labeled tree-leaf target architecture

has been successfully built, and 1 else.

8.5.7 SCOTCH_archMesh?2
Synopsis
int SCOTCH_archMesh2 (SCOTCH_Arch =« archptr,
const SCOTCH.Num xdimval,
const SCOTCH.Num ydimval)
scotchfarchmesh?2 (doubleprecision (x) archdat,
integerxnum xdimval,
integer*num ydimval,
integer ierr)
Description

The SCOTCH_archMesh?2 routine fills the SCOTCH_Arch structure pointed to
by archptr with the description of a 2D mesh architecture with xdimval x
ydimval processors.

Return values

SCOTCH_archMesh2 returns 0 if the 2D mesh target architecture has been
successfully built, and 1 else.

88

8.5.8 SCOTCH_archMesh3

Synopsis

int SCOTCH_archMesh3 (SCOTCH_Arch = archptr,
const SCOTCH.Num xdimval,
const SCOTCH.Num ydimval,
const SCOTCHNum zdimval)
scotchfarchmesh3 (doubleprecision (%) archdat,
integer*num xdimval,
integerxnum ydimval,
integerxnum zdimval,

integer ierr)

Description

The SCOTCH_archMesh3 routine fills the SCOTCH_Arch structure pointed to
by archptr with the description of a 3D mesh architecture with xdimval x

ydimval X zdimval processors.

Return values

SCOTCH_archMesh3 returns 0 if the 3D mesh target architecture has been

successfully built, and 1 else.

8.5.9 SCOTCH_archMeshX

Synopsis

int SCOTCH_archMeshX (SCOTCH_Arch = archptr,
const SCOTCH_Num dimnnbr,
const SCOTCH.-Num * dimntab)
scotchfarchmeshx (doubleprecision (x) archdat,
integerxnum dimnnbr,
integer*num dimntab,
integer ierr)
Description

The SCOTCH_archMeshX routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a dimnnbr-dimension mesh architec-
ture with [], dimntab[d] processors. The maximum number of dimensions is
defined at compile-time.

Return values

SCOTCH_archMeshX returns 0 if the dimnnbr-dimension mesh target archi-
tecture has been successfully built, and 1 else.

89

8.5.10 SCOTCH_archSub

Synopsis
int SCOTCH_archSub (SCOTCH_Arch = subarchptr,
SCOTCH_Arch =« orgarchptr,
const SCOTCH_Num vnumnbr,
const SCOTCH_.Num x vnumtab)
scotchfarchsub (doubleprecision (%) subarchdat,
doubleprecision () orgarchdat,
integerxnum vnumnbr,
integerxnum vnumtab,
integer ierr)
Description

The SCOTCH_archSub routine fills the SCOTCH_Arch structure pointed to
by subarchptr with the description of a subset of the orgarchptr archi-
tecture, restricted to vertnbr processors which are listed in the vnumtab
array. The order in which the processor indices in the original architecture
are stored in the vnumtab array defines the rank of these processors in the
sub-architecture.

Since the sub-architecture depends on the original architecture, the latter
must not be de-allocated (by way of SCOTCH_archExit) as long as the sub-
architecture is being used.

Return values

SCOTCH_archSub returns 0 if the target sub-architecture has been success-
fully built, and 1 else.

8.5.11 SCOTCH_archTleaf

Synopsis
int SCOTCH._archTleaf (SCOTCH_Arch = archptr,
const SCOTCH_Num levlnbr,
const SCOTCH_Num * sizetab,
const SCOTCH.Num = linktab)
scotchfarchtleaf (doubleprecision (x) archdat,
integerxnum levlnbr,
integersnum (%) sizetab,
integerxnum (*) linktab,
integer ierr)
Description

The SCOTCH_archTleaf routine fills the SCOTCH_Arch structure pointed to
by archptr with the description of a tree-shaped, hierarchical graph archi-

tecture with 31" ! sizetabli] processors. Level 0 is the root of the tree.

90

For each level 7, with 0 < i < levlnbr, sizetab[4] is the number of childs
at level (i + 1) of each node at level ¢, and linktab[i] is the cost of com-
munication between processors the first common ancestor of which belongs to

this level. See Section 6.4.2, page 28, for an example of this architecture.

Return values

SCOTCH_archTleaf returns O if the tree-leaf target architecture has been

successfully built, and 1 else.

8.5.12 SCOTCH_archTorus2

Synopsis

int SCOTCH.archTorus2 (SCOTCH_Arch = archptr,
const SCOTCH.Num xdimval,
const SCOTCH Num ydimval)
scotchfarchtorus2 (doubleprecision (%) archdat,
integerxnum xdimval,
integer*num ydimval,

integer ierr)

Description

The SCOTCH_archTorus2 routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a 2D torus architecture with xdimval x

ydimval processors.

Return values

SCOTCH_archTorus? returns 0 if the 2D torus target architecture has been

successfully built, and 1 else.

8.5.13 SCOTCH_archTorus3

Synopsis

int SCOTCH.archTorus3 (SCOTCH_Arch = archptr,
const SCOTCH.Num xdimval,
const SCOTCH.Num ydimval,
const SCOTCH_Num =zdimval)
scotchfarchtorus3 (doubleprecision (x) archdat,
integerxnum xdimval,
integerxnum ydimval,
integer*num zdimval,

integer ierr)

Description

91

The SCOTCH_archTorus3 routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a 3D torus architecture with xdimval x
ydimval X zdimval processors.

Return values

SCOTCH_archTorus3 returns 0 if the 3D torus target architecture has been
successfully built, and 1 else.

8.5.14 SCOTCH_archTorusX

Synopsis
int SCOTCH._archTorusX (SCOTCH_Arch = archptr,
const SCOTCH_Num dimnnbr,
const SCOTCH.Num * dimntab)
scotchfarchtorusx (doubleprecision (x) archdat,
integerxnum dimnnbr,
integerxnum dimntab,
integer ierr)
Description

The SCOTCH_archTorusX routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a dimnnbr-dimension torus architec-
ture with [, dimntab[d] processors. The maximum number of dimensions is
defined at compile-time.

Return values

SCOTCH_archTorusX returns 0 if the dimnnbr-dimension mesh target ar-
chitecture has been successfully built, and 1 else.

8.5.15 SCOTCH_archVcmplt

Synopsis

int SCOTCH_archVcmplt (SCOTCH_-Arch * archptr)

scotchfarchvcemplt (doubleprecision (%) archdat,
integer ierr)

Description

The SCOTCH_archVcmplt routine fills the SCOTCH_Arch structure pointed
to by archptr with the description of a “variable-sized” complete graph
architecture, which can be used as input to SCOTCH_graphMap to perform
graph clustering (see Section 3.2.3).

Every domain of a variable-size architecture can always be bipartitioned into
two subdomains. Consequently, when used in the context of a recursive bipar-
titioning algorithm, the algorithm will perform recursively until there is only

92

a single source graph vertex in some target domain, or some bipartitioning
method assigns all its source graph vertices to one of the subdomains.

Return values

SCOTCH_archVcmplt returns O if the variable-sized complete graph target
architecture has been successfully built, and 1 else.

8.5.16 SCOTCH_archVhcub

Synopsis

int SCOTCH._archVhcub (SCOTCH_Arch * archptr)

scotchfarchvhcub (doubleprecision () archdat,
integer ierr)

Description

The SCOTCH_archVhcub routine fills the SCOTCH_Arch structure pointed to
by archptr with the description of a “variable-sized” hypercube architecture,
which can be used as input to SCOTCH_graphMap to perform graph clustering
(see Section 3.2.3).

Every domain of a variable-size architecture can always be bipartitioned into
two subdomains. Consequently, when used in the context of a recursive bipar-
titioning algorithm, the algorithm will perform recursively until there is only
a single source graph vertex in some target domain, or some bipartitioning
method assigns all its source graph vertices to one of the subdomains.

The difference of the variable-sized hypercube architecture with respect to
the variable-sized complete graph architecture is that the cost of previously
cut edges increases with the dimension of the hypercube. Hence, when some
vertices whose edges have been cut previously, are placed in some part, their
cut neighbors will tend to be put in a same part as well, on the other branch
of the recursive bipartitioning tree, therefore increasing cluster locality.

Return values

8.6
8.6.1

SCOTCH_archVhcub returns 0 if the variable-sized hypercube target archi-
tecture has been successfully built, and 1 else.

Target domain handling routines

SCOTCH_archDomAlloc

Synopsis

SCOTCH_ArchDom = SCOTCH_archDomAlloc (void)

Description

93

The SCOTCH_archDomAlloc function allocates a memory area of a size suf-
ficient to store a SCOTCH_ArchDom structure. It is the user’s responsibility
to free this memory when it is no longer needed, using the SCOTCH_mem
Free routine.

Return values

SCOTCH_archDomAlloc returns the pointer to the memory area if it has
been successfully allocated, and NULL else.

8.6.2 SCOTCH_archDomBipart

Synopsis
int SCOTCH_archDomBipart (SCOTCH_Arch = archptr,
const SCOTCH_ArchDom » domnptr,
SCOTCH_ArchDom = domOptr,
SCOTCH_ArchDom =* domlptr)
scotchfarchdombipart (doubleprecision (x) archdat,
doubleprecision (x) domndat,
doubleprecision (x) domOdat,
doubleprecision (x) domldat,
integer ierr)

Description

The SCOTCH.archDomBipart function tries to split the domain referred
to by domnptr into two disjoint subdomains referred to by domOptr and
domlptr, in the target architecture referred to archptr.

Return values

SCOTCH_archDomBipart returns 0 if the domain could be bipartitioned, 1 if
bipartitioning could not be performed (because the domain is terminal), and
2 on error.

8.6.3 SCOTCH_archDomFrst

Synopsis
int SCOTCH_archDomFrst (SCOTCH_Arch = archptr,
SCOTCH_ArchDom * domnptr)
scotchfarchdomfrst (doubleprecision (%) archdat,
doubleprecision (x) domndat,
integer ierr)
Description

The SCOTCH_archDomFrst function initializes the domain structure referred
to by domnptr with the biggest domain of the target architecture referred to
archptr, that is, the domain that contains all terminal domains.

94

Return values

SCOTCH_archDomFrst returns 0 if the domain could be created, and 1 on
erTor.

8.6.4 SCOTCH_archDomSize

Synopsis
SCOTCH_Num SCOTCH_archDomSize (SCOTCH_Arch = archptr,
const SCOTCH_ArchDom x domnptr)
scotchfarchdomsize (doubleprecision (%) archdat,
doubleprecision (x) domndat,
integerxnum sizeval)
Description

The SCOTCH_archDomSize function returns the size of the domain referred
to by domnptr, that is, the number of terminal domains comprised in the
domain, within the architecture referred to by archptr. The Fortran routine
has a third parameter, of SCOTCH_Num type, which is set on return with the
domain size.

Return values

SCOTCH_archDomSize yields an integer value of type SCOTCH Num that
ranges between 1 and the number of terminal domains in the architecture.
8.6.5 SCOTCH_archDomSizeof

Synopsis

int SCOTCH_archDomSizeof (void)

scotchfarchdomsizeof (integer size)

Description

The SCOTCH.archDomSizeof routine returns the size, in bytes, of a
SCOTCH_ArchDom structure. This information is useful to export the in-
terface of the LIBSCOTCH to interpreted languages, without access to the
“scotch.h” include file.

8.6.6 SCOTCH_archDomTerm

Synopsis

int SCOTCH_archDomTerm (SCOTCH_Arch =* archptr,
SCOTCH_ArchDom * domnptr,
const SCOTCH_Num domnnum)

95

scotchfarchdomterm (doubleprecision (%) archdat,

doubleprecision (x) domndat,
integerxnum domnnum,
integer ierr)

Description

The SCOTCH_archDomTerm function initializes the domain structure referred
to by domnptr to correspond to the terminal domain of index domnnum in
the target architecture referred to archptr.

Applying the archDomNum function to this domain yields back domnnum.

Return values

SCOTCH_archDomTerm returns 0 if the domain could be created, 1 if
domnnum does not correspond to a valid terminal number for this architecture,
and 2 on error.

8.6.7 SCOTCH_archDomWght

Synopsis
SCOTCH.Num SCOTCH_archDomWght (SCOTCH_Arch =« archptr,
const SCOTCH_ArchDom x domnptr)
scotchfarchdomwght (doubleprecision (*x) archdat,
doubleprecision (x) domndat,
integerxnum wghtval)
Description

The SCOTCH_archDomWght function returns the weight of the domain re-
ferred to by domnptr in the architecture referred to by archptr. The For-
tran routine has a third parameter, of SCOTCH_Num type, which is set on
return with this weight. The weight of a domain is the sum of the weights of
all the terminal domains included within this domain.

Return values
SCOTCH_archDomWght yields an integer value of type SCOTCH Num that
ranges between 1 and the sum of the weights of all terminal domains in the
architecture.

8.6.8 SCOTCH_archDomDist

Synopsis

SCOTCH_Num SCOTCH_archDomDist (SCOTCH_Arch = archptr,
const SCOTCH_ArchDom x domOptr,
const SCOTCH_ArchDom x domlptr)

96

scotchfarchdomwght (doubleprecision (*x) archdat,

doubleprecision (x) domOdat,
doubleprecision (x) domldat,
integerxnum distval)

Description

The SCOTCH_archDomDist function returns the estimated distance between
the two domains referred to by domOptr and domlptr in the architecture
referred to by archptr. The Fortran routine has a fourth parameter, of
SCOTCH_Num type, which is set on return with this distance.

The desirable properties of distance functions are described in Section 3.2.
Basically, they should provide more accurate results as domain sizes decrease
and as distance decreases.

Return values

SCOTCH_archDomDist yields an integer value of type SCOTCH_Num that is
always greater than or equal to zero. It is equal to the maximum available
integer value when the two domains belong to different connected components
of a disconnected target architecture.

8.6.9 SCOTCH_archDomNum

Synopsis
SCOTCH_Num SCOTCH_archDomNum (SCOTCH_Arch = archptr,
const SCOTCH_ArchDom x domnptr)
scotchfarchdomnum (doubleprecision (=) archdat,
doubleprecision (x) domndat,
integerxnum domnnum)
Description

The SCOTCH_archDomNum function returns the smallest number of terminal
domain included within the domain referred to by domnptr of the architec-
ture referred to by archptr. The Fortran routine has a third parameter, of
SCOTCH_Num type, which is set on return with this terminal number.

Return values

SCOTCH_archDomNum yields an integer value of type SCOTCH_Num that
ranges between 0 and the number of terminal domains in the architecture,
minus 1.

8.7 Graph handling routines
8.7.1 SCOTCH_graphAlloc
Synopsis

SCOTCH_Graph % SCOTCH_graphAlloc (void)

97

Description

The SCOTCH_graphAlloc function allocates a memory area of a size suffi-
cient to store a SCOTCH_Graph structure. It is the user’s responsibility to free
this memory when it is no longer needed, using the SCOTCH_memF ree routine.
The allocated space must be initialized before use, by means of the SCOTCH_
graphInit routine.

Return values

SCOTCH_graphAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.7.2 SCOTCH_graphBase

Synopsis

int SCOTCH_graphBase (SCOTCH_Graph * grafptr,

SCOTCH_Num baseval)
scotchfgraphbase (doubleprecision (%) grafdat,
integerxnum baseval,
integerxnum oldbaseval)

Description

The SCOTCH_graphBase routine sets the base of all graph indices according
to the given base value, and returns the old base value. This routine is a
helper for applications that do not handle base values properly.

In Fortan, the old base value is returned in the third parameter of the function
call.

Return values

SCOTCH_graphBase returns the old base value.

8.7.3 SCOTCH_graphBuild

Synopsis
int SCOTCH_graphBuild (SCOTCH_Graph = grafptr,
const SCOTCH_Num baseval,
const SCOTCH_Num vertnbr,

const SCOTCH.Num * verttab,
const SCOTCH.Num * vendtab,
const SCOTCH_Num * velotab,
const SCOTCH_Num *= vlbltab,
const SCOTCH_Num edgenbr,
const SCOTCH.Num * edgetab,
const SCOTCH_Num =* edlotab)

98

scotchfgraphbuild (doubleprecision (%) grafdat,

integer*num baseval,
integerxnum vertnbr,
integerxnum (%) verttab,
integerxnum (*) vendtab,
integerxnum (x) velotab,
integerxnum (*) vibltab,
integerxnum edgenbr,
integer*xnum (x) edgetab,
integerxnum (*) edlotab,
integer ierr)

Description

The SCOTCH_graphBuild routine fills the source graph structure pointed to
by grafptr with all of the data that are passed to it.

baseval is the graph base value for index arrays (typically 0 for structures
built from C and 1 for structures built from Fortran). vertnbr is the number
of vertices. verttab is the adjacency index array, of size (vertnbr + 1) if
the edge array is compact (that is, if vendtab equals verttab+ 1 or NULL),
or of size vertnbr else. vendtab is the adjacency end index array, of size
vertnbr if it is disjoint from verttab. velotab is the vertex load array, of
size vertnbr if it exists. vlbltab is the vertex label array, of size vertnbr
if it exists. edgenbr is the number of arcs (that is, twice the number of
edges). edgetab is the adjacency array, of size at least edgenbr (it can be
more if the edge array is not compact). edlotab is the arc load array, of size
edgenbr if it exists.

The vendtab, velotab, vlbltab and edlotab arrays are optional, and a
NULL pointer can be passed as argument whenever they are not defined. Since,
in Fortran, there is no null reference, passing the scotchfgraphbuild rou-
tine a reference equal to verttab in the velotab or vibltab fields makes
them be considered as missing arrays. The same holds for edlotab when
it is passed a reference equal to edgetab. Setting vendtab to refer to one
cell after verttab yields the same result, as it is the exact semantics of a
compact vertex array.

To limit memory consumption, SCOTCH_graphBuild does not copy array
data, but instead references them in the SCOTCH_Graph structure. Therefore,
great care should be taken not to modify the contents of the arrays passed to
SCOTCH_graphBuild as long as the graph structure is in use. Every update
of the arrays should be preceded by a call to SCOTCH_graphFree, to free
internal graph structures, and eventually followed by a new call to SCOTCH_
graphBuild to re-build these internal structures so as to be able to use the
new graph.

To ensure that inconsistencies in user data do not result in an erroneous
behavior of the LIBSCOTCH routines, it is recommended, at least in the devel-
opment stage, to call the SCOTCH_graphCheck routine on the newly created
SCOTCH_Graph structure before calling any other LIBSCOTCH routine.

Return values

99

SCOTCH_graphBuild returns 0 if the graph structure has been successfully
set with all of the input data, and 1 else.
8.7.4 SCOTCH_graphCheck

Synopsis

int SCOTCH_graphCheck (const SCOTCH_Graph * grafptr)

scotchfgraphcheck (doubleprecision (%) grafdat,
integer ierr)

Description

The SCOTCH._graphCheck routine checks the consistency of the given
SCOTCH_Graph structure. It can be used in client applications to deter-
mine if a graph that has been created from used-generated data by means
of the SCOTCH_graphBuild routine is consistent, prior to calling any other
routines of the LIBSCOTCH library.

Return values

SCOTCH_graphCheck returns 0 if graph data are consistent, and 1 else.

8.7.5 SCOTCH_graphCoarsen

Synopsis

int SCOTCH_graphCoarsen (const SCOTCH_Graph » finegrafptr,

const SCOTCH_Num coarvertnbr,

const double coarrat,

const SCOTCH_Num flagval,

SCOTCH_Graph =« coargrafptr,

SCOTCH_Num =* coarmulttab)

scotchfgraphcoarsen (doubleprecision (%) finegrafdat,

integerxnum coarvertnbr,
doubleprecision coarrat,
integer*num flagval,
doubleprecision (x*) coargrafdat,
integerxnum (x) coarmulttab,
integer ierr)

Description

The SCOTCH_graphCoarsen routine creates, in the SCOTCH_Graph struc-
ture coargrafdat pointed to by coargrafptr, a graph coarsened from
the SCOTCH_Graph structure finegrafdat pointed to by finegrafptr.
The coarsened graph is created only if it comprises more than coarvert
nbr vertices, or if the coarsening ratio is lower than coarrat. Valid coars-
ening ratio values range from 0.5 (in the case of a perfect matching) to 1.0 (if

100

no vertex could be coarsened). Classical threshold values range from 0.7 to
0.8.

The flagval flag specifies the type of coarsening. When SCOTCH_COARSEN
NOMERGE is set, isolated vertices are never merged with other vertices. This
preserves the topology of the graph, at the expense of a higher coarsening
ratio.

The coarmulttab array should be of a size big enough to store multinode
data for the resulting coarsened graph. Hence, the size of the array must be at
least twice the maximum expected number of local coarse vertices, according
to the prescribed coarsening ratio coarrat. Upon successful completion,
this array will contain pairs of consecutive SCOTCH_Num values, representing
the indices of the two fine vertices that have been coarsened into each of
the coarse vertices. When a vertex has been coarsened with itself, its two
multinode values are identical.

coargrafdat must have been initialized with the SCOTCH_graphInit rou-
tine before SCOTCH_graphCoarsen is called.

Return values

SCOTCH_graphCoarsen returns 0 if the coarse graph structure has been
successfully created, 1 if the coarse graph was not created because it did not
enforce the threshold parameters, and 2 on error.

8.7.6 SCOTCH_graphCoarsenBuild

Synopsis

int SCOTCH_graphCoarsenBuild (SCOTCH_Graph = finegrafptr,
const SCOTCH_Num coarvertnbr,

SCOTCH_Num =* finematetab,

SCOTCH_Graph =« coargrafptr,

SCOTCH_-Num =* coarmulttab)

scotchfgraphcoarsenbuild (doubleprecision (%) finegrafdat,
integerxnum coarvertnbr,

integerxnum (x) finematetab,

doubleprecision ()
integer*num (*)
integer

Description

coargrafdat,
coarmulttab,
ierr)

The SCOTCH_graphCoarsenBuild routine creates, in the SCOTCH_Graph
structure coargrafdat pointed to by coargrafptr, a graph with coar
vertnbr vertices, coarsened from the SCOTCH_Graph structure finegraf
dat pointed to by finegrafptr, using the matching provided by finemate
tab.

On input, the finematetab mating array should contain the indices of the
mates chosen for each vertex of the fine graph. When some vertex is mated to
itself, its array cell value is equal to its own index. Upon successful completion,

101

this array is updated so as to contain fine-to-coarse indices: each array cell
contains the index of the coarse vertex created from the given fine vertex.

The finematetab mating array and its associated number of coarse ver-
tices coarvertnbr may have been computed using the SCOTCH_graph
CoarsenMatch routine. Indeed, calling the SCOTCH_graphCoarsenMatch
and SCOTCH_graphCoarsenBuild routines in sequence amounts to calling
the SCOTCH_graphCoarsen routine, yet additionally publicizing the fine
matetab array.

The coarmulttab array should be of a size big enough to store multinode
data for the resulting coarsened graph, that is, twice the value of coarvert
nbr. Upon successful completion, this array will contain pairs of consecutive
SCOTCH_Num values, representing the indices of the two fine vertices that
have been coarsened into each of the coarse vertices. When a vertex has been
coarsened with itself, the two multinode values are identical.

coargrafdat must have been initialized with the SCOTCH_graphInit rou-
tine before SCOTCH_graphCoarsenBuild is called.

Return values

SCOTCH_graphCoarsenBuild returns 0 if the coarse graph structure has
been successfully created, and 1 on error.

8.7.7 SCOTCH_graphCoarsenMatch

Synopsis

int SCOTCH_graphCoarsenMatch (SCOTCH_Graph = finegrafptr,
SCOTCH_Num = coarvertptr,
const double coarrat,
const SCOTCH.Num flagval,
SCOTCH_Num = finematetab)
scotchfgraphcoarsenmatch (doubleprecision (%) finegrafdat,
integerxnum coarvertnbr,
doubleprecision coarrat,
integerxnum flagval,
integerxnum (x) finematetab,
integer ierr)

Description

The SCOTCH._graphCoarsenMatch routine fills the finematetab array
with a matching of the vertices of the SCOTCH_Graph structure finegraf
dat pointed to by finegrafptr. The matching is computed only if it
amounts to the creation of more than coarvertnbr (that is, the value
pointed to by coarvertptr in the C interface) coarse vertices, or if the
coarsening ratio is lower than coarrat. Valid coarsening ratio values range
from 0.5 (in the case of a perfect matching) to 1.0 (if no vertex could be
coarsened). Classical threshold values range from 0.7 to 0.8.

The flagval flag specifies the type of matching. When SCOTCH_COARSEN
NOMERGE is set, isolated vertices are never matched with other vertices. This

102

preserves the topology of the graph, at the expense of a higher coarsening
ratio.

The finematetab array must be of a size sufficient to hold as many SCOTCH_
Num values as the number of vertices in the finegrafdat graph. Upon
successful completion, this array will contain the indices of the mates chosen
for each vertex of the provided graph. When some vertex is mated to itself,
its array cell value is equal to its own index. Additionally, coarvertnbr will
be set to the number of coarse vertices associated with the matching. This
number is equal to the number of vertices in the provided graph, minus the
number of matched pairs of vertices, since in a subsequent coarsening process,
each pair should see its two matched vertices collapsed into a single coarse
vertex.

The mating array and its associated number of coarse vertices can be used
by the SCOTCH_graphCoarsenBuild routine. Indeed, calling the SCOTCH_
graphCoarsenMatch and SCOTCH_graphCoarsenBuild routines in se-
quence amounts to calling the SCOTCH_graphCoarsen routine, yet addi-
tionally publicizing the finematetab array.

Return values

SCOTCH_graphCoarsenMatch returns 0 if a matching has been successfully
computed, 1 if the matching was not computed because it did not enforce the
threshold parameters, and 2 on error.

8.7.8 SCOTCH_graphColor
Synopsis
int SCOTCH_graphColor (const SCOTCH. Graph * grafptr,
SCOTCH_Num = colotab,
SCOTCH_Num =* coloptr,
SCOTCH_Num flagval)
scotchfgraphcolor (doubleprecision (%) grafdat,
integerxnum (%) colotab,
integernum colonbr,
integernum flagval,
integer ierr)
Description

The SCOTCH_graphColor routine computes a coloring of the graph vertices.
The colotab array is filled with color values, and the number of colors found
is placed into the integer variable colonbr, pointed to by coloptr.

The computed coloring is not guaranteed to be maximal. Indeed, the only
algorithm currently implemented is a variant of Luby’s algorithm. Due to
the operations of this algorithm, the first colors are likely to have many more
representatives than the last colors.

Like for partition arrays, color values are not based: color values range from
0 to (colonbr —1).

103

The flag value flagval is currently not used. It may be used in the future to
select a coloring method. At the time being, a value of 0 should be provided.

Return values

SCOTCH_graphColor returns O if the graph coloring has been successfully
computed, and 1 else.

8.7.9 SCOTCH_graphData
Synopsis
void SCOTCH_graphData (const SCOTCH_Graph * grafptr,
SCOTCH_Num = baseptr,
SCOTCH_Num =* vertptr,
SCOTCH_Num ** verttab,
SCOTCH_Num ** vendtab,
SCOTCH_Num ** velotab,
SCOTCH_Num ** vlibltab,
SCOTCH_Num =* edgeptr,
SCOTCH_Num ** edgetab,
SCOTCH_Num *=* edlotab)
scotchfgraphdata (doubleprecision (*x) grafdat,
integerxnum (*) indxtab,
integerxnum baseval,
integer*num vertnbr,
integerx*idz vertidx,
integerx*idr vendidx,
integerx*idr veloidx,
integerx*ide vlblidx,
integerxnum edgenbr,
integer*idz edgeidx,
integer*num edloidx)
Description

The SCOTCH_graphData routine is the dual of the SCOTCH_graphBuild
routine. It is a multiple accessor that returns scalar values and array refer-
ences.

baseptr is the pointer to a location that will hold the graph base value
for index arrays (typically 0 for structures built from C and 1 for structures
built from Fortran). vertptr is the pointer to a location that will hold the
number of vertices. verttab is the pointer to a location that will hold the
reference to the adjacency index array, of size *xvertptr + 1 if the adjacency
array is compact, or of size xvertptr else. vendtab is the pointer to a
location that will hold the reference to the adjacency end index array, and
is equal to verttab + 1 if the adjacency array is compact. velotab is the
pointer to a location that will hold the reference to the vertex load array,
of size xvertptr. vlibltab is the pointer to a location that will hold the
reference to the vertex label array, of size vertnbr. edgeptr is the pointer

104

to a location that will hold the number of arcs (that is, twice the number of
edges). edgetab is the pointer to a location that will hold the reference to
the adjacency array, of size at least redgeptr. edlotab is the pointer to a
location that will hold the reference to the arc load array, of size xedgeptr.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow
users to access graph arrays. The scotchfgraphdata routine is passed an
integer array, the first element of which is used as a base address from which all
other array indices are computed. Therefore, instead of returning references,
the routine returns integers, which represent the starting index of each of the
relevant arrays with respect to the base input array, or vertidx, the index
of verttab, if they do not exist. For instance, if some base array myarray
(1) is passed as parameter indxtab, then the first cell of array verttab
will be accessible as myarray (vertidx). In order for this feature to behave
properly, the indxtab array must be word-aligned with the graph arrays.
This is automatically enforced on most systems, but some care should be
taken on systems that allow one to access data that is not word-aligned. On
such systems, declaring the array after a dummy doubleprecision array
can coerce the compiler into enforcing the proper alignment. Also, on 32_64
architectures, such indices can be larger than the size of a regular INTEGER.
This is why the indices to be returned are defined by means of a specific
integer type. See Section 8.1.5 for more information on this issue.

8.7.10 SCOTCH_graphDiamPV

Synopsis

SCOTCH_Num SCOTCH_graphDiamPV (const SCOTCH_Graph * grafptr)

scotchfgraphdiampv (doubleprecision (%) grafdat,
integernum diamval)

Description

The SCOTCH._graphDiamPV routine computes the edge-weighted (pseudo-
)diameter value of the given graph.

To do so, it selects a random vertex, computes the set of vertices at maximum
distance from this vertex by means of Dijkstra’s algorithm, selects a vertex
from this set, and repeats the process as long as this maximum distance value
increases. If the graph is not edge-weighted, neighboring vertices are assumed
to be at distance 1 from each other; else, edge weights represent distances
between vertices.

Return values

SCOTCH_graphDiamPV returns a positive value if the graph diameter has
been successfully computed, the SCOTCH_NUMMAX maximum positive value if
the graph is disconnected, and —1 on error.

105

8.7.11 SCOTCH_graphDump

Synopsis

int SCOTCH_graphDump (const SCOTCH_-Graph x grafptr,

const char = prefptr,
const char «* suffptr,
FILE = stream)

Description

The SCOTCH_graphDump routine outputs the contents of the SCOTCH_Graph
structure pointed to by grafptr to stream stream, in the form of a C source
code. The names of the data arrays that encode the various graph arrays (see
Section 8.2.2), as well as the “GraphBuild” stem of the graph building func-
tion name, are prefixed and suffixed by the prefptr and suffptr strings,
respectively.

Return values

SCOTCH_graphDump returns 0 if the C source code corresponding to the
graph structure has been successfully written to stream, and 1 else.
8.7.12 SCOTCH_graphExit

Synopsis

void SCOTCH_graphExit (SCOTCH_Graph * grafptr)
scotchfgraphexit (doubleprecision (%) grafdat)

Description

The SCOTCH_graphExit function frees the contents of a SCOTCH_Graph
structure previously initialized by SCOTCH_graphInit. All subsequent calls
to SCOTCH_graph routines other than SCOTCH_graphInit, using this struc-
ture as parameter, may yield unpredictable results.

8.7.13 SCOTCH_graphFree

Synopsis

void SCOTCH_graphFree (SCOTCH_Graph = grafptr)

scotchfgraphfree (doubleprecision () grafdat)

Description

106

The SCOTCH_graphFree function frees the graph data of a SCOTCH_Graph
structure previously initialized by SCOTCH_graphInit, but preserves its in-
ternal data structures. This call is equivalent to a call to SCOTCH_graph
Exit immediately followed by a call to SCOTCH_graphInit. Consequently,
the given SCOTCH_Graph structure remains ready for subsequent calls to any
routine of the LIBSCOTCH library.

8.7.14 SCOTCH.graphInduceList

Synopsis

int SCOTCH_graphInducelList (const SCOTCH._Graph * orggrafptr,

SCOTCH_Num vnumnbr,

SCOTCH_Num =* vnumtab,

SCOTCH_Graph = indgrafptr)

scotchfgraphinducelist (doubleprecision (%) orggrafdat,

integer*xnum vnumnbr,
integernum (x) vnumtab,
doubleprecision (x) indgrafdat,
integer ierr)

Description

The SCOTCH.graphInduceList routine computes an induced graph
indgrafdat from the original graph orggrafdat. The vertices that are
kept in the induced graph are the vnumnbr vertices whose based indices in
the original graph are provided in the vnumtab array, in its first vnumnbr

cells.

Return values

SCOTCH_graphInduceList returns 0 if the induced graph has been suc-

cessfully computed, and 1 else.

8.7.15 SCOTCH_graphInducePart

Synopsis

int SCOTCH_graphInducePart (const SCOTCH.Graph * orggrafptr,

SCOTCH_Num vnumnbr,

SCOTCH_GraphPart2 = parttab,

SCOTCH_GraphPart?2 partval,

SCOTCH_Graph =« indgrafptr)

scotchfgraphinducepart (doubleprecision (%) orggrafdat,

integerxnum vnumnbr,
characternum (*) parttab,
characternum partval,
doubleprecision (x) indgrafdat,
integer ierr)

107

Description

The SCOTCH.graphInducePart routine computes an induced graph
indgrafdat from the original graph orggrafdat. The vertices that are
kept in the induced graph are the vnumnbr vertices whose part number in
the parttab array are equal to partval. The SCOTCH_GraphPart?2 type,
being a very small integer (most likely, an unsigned char), is assumed to
hold only small values, e.g. 0 or 1.

Return values

SCOTCH_graphInducePart returns 0O if the induced graph has been suc-
cessfully computed, and 1 else.
8.7.16 SCOTCH_graphInit

Synopsis

int SCOTCH_graphInit (SCOTCH_-Graph > grafptr)

scotchfgraphinit (doubleprecision (%) grafdat,
integer ierr)

Description

The SCOTCH._graphInit function initializes a SCOTCH_Graph structure so
as to make it suitable for future operations. It should be the first function to
be called upon a SCOTCH_Graph structure. When the graph data is no longer
of use, call function SCOTCH_graphExit to free its internal structures.

Return values

SCOTCH_graphInit returns 0 if the graph structure has been successfully
initialized, and 1 else.

8.7.17 SCOTCH_graphLoad

Synopsis

int SCOTCH_graphLoad (SCOTCH_Graph x grafptr,

FILE «* stream,
SCOTCH_Num baseval,
SCOTCH_Num flagval)
scotchfgraphload (doubleprecision (%) grafdat,
integer fildes,
integer*num baseval,
integerxnum flagval,
integer ierr)

Description

108

The SCOTCH_graphLoad routine fills the SCOTCH_Graph structure pointed
to by grafptr with the source graph description available from stream
stream in the SCOTCH graph format (see section 6.1).

To ease the handling of source graph files by programs written in C as well as
in Fortran, the base value of the graph to read can be set to 0 or 1, by setting
the baseval parameter to the proper value. A value of -1 indicates that the
graph base should be the same as the one provided in the graph description
that is read from stream.

The flagval value is a combination of the following integer values, that may
be added or bitwise-ored:
0 Keep vertex and edge weights if they are present in the st ream data.

1 Remove vertex weights. The graph read will have all of its vertex weights
set to one, regardless of what is specified in the st ream data.

2 Remove edge weights. The graph read will have all of its edge weights
set to one, regardless of what is specified in the stream data.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the graph file.

Return values

SCOTCH_graphLoad returns 0 if the graph structure has been successfully
allocated and filled with the data read, and 1 else.

8.7.18 SCOTCH_graphSave

Synopsis

int SCOTCH_graphSave (const SCOTCH_Graph * grafptr,

FILE = stream)
scotchfgraphsave (doubleprecision (%) grafdat,
integer fildes,
integer ierr)

Description

The SCOTCH_graphSave routine saves the contents of the SCOTCH_Graph
structure pointed to by grafptr to stream stream, in the SCOTCH graph
format (see section 6.1).

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the graph file.

Return values

SCOTCH_graphSave returns 0 if the graph structure has been successfully
written to stream, and 1 else.

109

8.7.19 SCOTCH.graphSize

Synopsis

void SCOTCH_graphSize (const SCOTCH._.Graph * grafptr,

SCOTCH_Num = vertptr,

SCOTCH_Num =* edgeptr)
scotchfgraphsize (doubleprecision (%) grafdat,
integerxnum vertnbr,
integer*num edgenbr)

Description

The SCOTCH_graphSize routine fills the two areas of type SCOTCH_Num
pointed to by vertptr and edgeptr with the number of vertices and arcs
(that is, twice the number of edges) of the given graph pointed to by grafptr,
respectively.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

This routine is useful to get the size of a graph read by means of the SCOTCH_
graphLoad routine, in order to allocate auxiliary arrays of proper sizes. If
the whole structure of the graph is wanted, function SCOTCH_graphData
should be preferred.

8.7.20 SCOTCH_graphSizeof

Synopsis

int SCOTCH_graphSizeof (void)

scotchfgraphsizeof (integer size)

Description

The SCOTCH_graphSizeof routine returns the size, in bytes, of a SCOTCH_
Graph structure. This information is useful to export the interface of the LiB-
SCOTCH to interpreted languages, without access to the “scotch.h” include
file.

8.7.21 SCOTCH_graphStat

Synopsis

110

void SCOTCH_graphStat (const SCOTCH._.Graph * grafptr,
SCOTCH_Num * velominptr,
SCOTCH_Num =* velomaxptr,
SCOTCH_Num = velosumptr,
double = veloavgptr,
double =* velodltptr,
SCOTCH_Num =* degrminptr,
SCOTCH_Num =* degrmaxptr,
double =* degravgptr,
double = degrdltptr,
SCOTCH_Num = edlominptr,
SCOTCH_Num =* edlomaxptr,
SCOTCH_Num =* edlosumptr,
double = edloavgptr,
double = edlodltptr)
scotchfgraphstat (doubleprecision () grafdat,
integerxnum velomin,
integerxnum velomax,
integerxnum velosum,
doubleprecision veloavg,
doubleprecision velodlt,
integerxnum degrmin,
integer*num degrmax,
doubleprecision degravg,
doubleprecision degrdlt,
integer*num edlomin,
integerxnum edlomax,
integerxnum edlosum,
doubleprecision edloavg,
doubleprecision edlodlt)
Description

The SCOTCH_graphStat routine produces some statistics regarding the
graph structure pointed to by grafptr. velomin, velomax, velosum,
veloavg and velodlt are the minimum vertex load, the maximum vertex
load, the sum of all vertex loads, the average vertex load, and the variance of
the vertex loads, respectively. degrmin, degrmax, degravg and degrdlt
are the minimum vertex degree, the maximum vertex degree, the average ver-
tex degree, and the variance of the vertex degrees, respectively. edlomin,
edlomax, edlosum, edloavg and edlodlt are the minimum edge load,
the maximum edge load, the sum of all edge loads, the average edge load, and
the variance of the edge loads, respectively.

8.8 High-level graph partitioning, mapping and clustering

routines

The routines presented in this section provide high-level functionalities and free
the user from the burden of calling in sequence several of the low-level routines
described in the next section.

111

8.8.1

SCOTCH_graphMap

Synopsis

int SCOTCH_graphMap (const SCOTCH.Graph x grafptr,
const SCOTCH_Arch =« archptr,
const SCOTCH_Strat * straptr,

SCOTCH_Num =* parttab)
scotchfgraphmap (doubleprecision (%) grafdat,
doubleprecision () archdat,
doubleprecision (x) stradat,
integer*num (%) parttab,
integer ierr)

Description

The SCOTCH_graphMap routine computes a mapping of the source graph
structure pointed to by grafptr onto the target architecture pointed to by
archptr, using the mapping strategy pointed to by straptr (as defined
in Section 8.3.2), and returns the mapping data in the array pointed to by
parttab.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph.

On return, every cell of the mapping array holds the number of the target
vertex to which the corresponding source vertex is mapped. The numbering
of target values is mot based: target vertices are numbered from 0 to the
number of target vertices minus 1. This semantics aims at complying with
standards such as MPI, in which process ranks start from 0.

When a variable-sized architecture is used (see Section 6.4.3) and a proper
strategy is provided (see Section 8.16.2), the SCOTCH_graphMap routine can
cluster the given graph by means of recursive bipartitioning. In this case,
clusters are labeled according to a binary scheme: the part equal to the whole
graph is numbered 1, its two bipartitioned descendants are labeled 2 and 3,
the two descendants of part 2 are labeled 4 and 5, and so on. More generally,
clusters are labeled such that the two descendants of any cluster ¢ that has
been split are labeled 2¢ and 2i + 1.

Classical clustering strategies perform recursive bipartitioning of process
graphs until some criterion is met: either parts become smaller than some
size threshold, or edge density becomes higher than some ratio, etc. If graph
mapping is performed using a variable-sized architecture and a classical map-
ping strategy, recursive bipartitioning will halt only when the load imbalance
criterion allows for one of the bipartitioned parts to be empty (that is, most
often, parts contains a single vertex).

Return values

SCOTCH_graphMap returns 0 if the mapping of the graph has been success-
fully computed, and 1 else. In this last case, the parttab array may however
have been partially or completely filled, but its contents are not significant.

112

8.8.2

SCOTCH_graphMapFixed

Synopsis

int SCOTCH_graphMapFixed (const SCOTCH_Graph * grafptr,
const SCOTCH_Arch =« archptr,
const SCOTCH_Strat = straptr,

SCOTCH_Num =* parttab)
scotchfgraphmapfixed (doubleprecision (x) grafdat,
doubleprecision (x) archdat,
doubleprecision () stradat,
integer*num (*) parttab,
integer ierr)

Description

The SCOTCH_graphMapFixed routine computes a mapping of the source
graph structure pointed to by grafptr onto the target architecture pointed
to by archptr, using the mapping strategy pointed to by straptr (as
defined in Section 8.3.2), and fills the array pointed to by parttab with the
mapping data regarding vertices which have not been pre-assigned by the user.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source graph.
It must also have been filled in advance by the user, with data indicating
whether vertices have been already pre-assigned to a fixed position or are to
be processed by the routine. In each cell of the parttab array, a value of —1
indicates that the vertex is movable, while a value between 0 and the number
of target vertices minus 1 indicates that the vertex has been pre-assigned to
the given part.

On return, every cell of the mapping array that contained a —1 will hold
the number of the target vertex to which the corresponding source vertex is
mapped. The numbering of target values is not based: target vertices are
numbered from 0 to the number of target vertices minus 1. This semantics
aims at complying with standards such as MPI, in which process ranks start
from 0.

Return values

8.8.3

SCOTCH_graphMapFixed returns 0 if the mapping of the graph has been
successfully computed, and 1 else. In this last case, the parttab array may
however have been partially or completely filled, but its contents are not
significant.

SCOTCH_graphPart

Synopsis

113

int SCOTCH_graphPart (const SCOTCH_Graph * grafptr,

const SCOTCH_Num partnbr,
const SCOTCH_Strat % straptr,
SCOTCH_Num * parttab)
scotchfgraphpart (doubleprecision (%) grafdat,
integerxnum partnbr,
doubleprecision (x) stradat,
integerxnum (x) parttab,
integer ierr)

Description

The SCOTCH_graphPart routine computes an edge-separated partition, into
partnbr parts, of the source graph structure pointed to by grafptr, using
the graph edge partitioning strategy pointed to by stratptr (as defined
in Section 8.3.2), and returns the partition data in the array pointed to by
parttab.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph.

On return, every cell of the mapping array holds the number of the target
vertex to which the corresponding source vertex is mapped. The numbering
of target values is not based: target vertices are numbered from 0 to partnbr—
1. This semantics aims at complying with standards such as MPI, in which
process ranks start from 0.

Return values

SCOTCH_graphPart returns O if the graph partition has been successfully
computed, and 1 else. In the latter case, the parttab array may however
have been partially or completely filled, but its contents are not significant.

8.8.4 SCOTCH_graphPartFixed

Synopsis

int SCOTCH_graphPartFixed (const SCOTCH_Graph » grafptr,

const SCOTCH_Num partnbr,
const SCOTCH_Strat x straptr,
SCOTCH_Num =* parttab)
scotchfgraphpartfixed (doubleprecision (x) grafdat,
integer*xnum partnbr,
doubleprecision (x*) stradat,
integer*num (*) parttab,
integer ierr)

Description

The SCOTCH_graphPartFixed routine computes an edge-separated par-
tition, into partnbr parts, of the source graph structure pointed to by

114

grafptr, using the graph edge partitioning strategy pointed to by stratptr
(as defined in Section 8.3.2), and fills the array pointed to by parttab with
the partitioning data regarding vertices which have not been pre-assigned by
the user.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source graph.
It must also have been filled in advance by the user, with data indicating
whether vertices have been already pre-assigned to a fixed position or are to
be processed by the routine. In each cell of the parttab array, a value of —1
indicates that the vertex is movable, while a value between 0 and the number
of target vertices minus 1 indicates that the vertex has been pre-assigned to
the given part.

On return, every cell of the mapping array that contained a —1 will hold
the number of the target vertex to which the corresponding source vertex is
assigned. The numbering of target values is not based: target vertices are
numbered from 0 to the number of target vertices minus 1. This semantics
aims at complying with standards such as MPI, in which process ranks start
from 0.

Return values

SCOTCH_graphPartFixed returns 0 if the graph partition has been success-
fully computed, and 1 else. In the latter case, the parttab array may however
have been partially or completely filled, but its contents are not significant.

8.8.5 SCOTCH_graphPartOvl

Synopsis

int SCOTCH_graphPartOvl (const SCOTCH_Graph » grafptr,

const SCOTCH_Num partnbr,
const SCOTCH_Strat x straptr,
SCOTCH_Num =* parttab)
scotchfgraphpartovl (doubleprecision (x) grafdat,
integer*num partnbr,
doubleprecision (x*) stradat,
integerxnum (x) parttab,
integer ierr)

Description

The SCOTCH_graphPartOvl routine computes an overlapped vertex-
separated partition, into partnbr parts, of the source graph structure pointed
to by grafptr, using the graph vertex partitioning with overlap strategy
pointed to by stratptr (as defined in Section 8.3.4), and returns the parti-
tion data in the array pointed to by parttab.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph.

115

On return, every array cell holds the number of the part to which the corre-
sponding vertex is mapped. Regular parts are numbered from 0 to partnbr—1,
and separator vertices are labeled with part number -1.

While SCOTCH_graphMap and SCOTCH_graphPart are based on edge parti-
tioning methods, SCOTCH_graphPartOvl relies on a completely distinct set
of routines to compute vertex separators. This is why SCOTCH_graphPart
Ov1 requires strategy strings of a different kind, created by the SCOTCH._
stratGraphPartOvl« routines only (see Sections 8.16.5 and 8.16.6).

Return values

8.8.6

SCOTCH_graphPartOvl returns 0 if the partition of the graph has been
successfully computed, and 1 else. In the latter case, the parttab array
may however have been partially or completely filled, but its contents are not
significant.

SCOTCH_graphRemap

Synopsis

int SCOTCH_graphRemap (const SCOTCH_-Graph » grafptr,
const SCOTCH_Arch x archptr,

const SCOTCH_Num =* parotab,
const double emraval,
const SCOTCH_Num = vmlotab,
const SCOTCH_Strat * straptr,
SCOTCH_Num * parttab)
scotchfgraphremap (doubleprecision (%) grafdat,
doubleprecision (x) archdat,
integerxnum (*) parotab,
doubleprecision emraval,
integer*xnum (%) vmlotab,
doubleprecision () stradat,
integerxnum (%) parttab,
integer ierr)

Description

The SCOTCH_graphRemap routine computes a remapping of the source graph
structure pointed to by grafptr onto the target architecture pointed to by
archptr, based on the old partition array pointed to by parotab, using the
mapping strategy pointed to by straptr (as defined in Section 8.3.2), and
returns the mapping data in the array pointed to by parttab.

The parotab array stores the old partition that is used to compute migration
costs. Every cell contains values from 0 to the number of target vertices minus
1, or —1 for vertices that did not belong to the old partition (e.g., vertices
newly created by graph adaptation, which can be placed at no cost before
their associated data is interpolated).

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-

116

munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph.

On return, every cell of the mapping array holds the number of the target
vertex to which the corresponding source vertex is mapped. The numbering
of target values is not based: target vertices are numbered from 0 to the
number of target vertices minus 1. This semantics aims at complying with
standards such as MPI, in which process ranks start from 0.

Return values

SCOTCH_graphRemap returns 0 if the mapping of the graph has been success-
fully computed, and 1 else. In this last case, the parttab array may however
have been partially or completely filled, but its contents are not significant.

8.8.7 SCOTCH_graphRemapFixed

Synopsis

int SCOTCH._graphRemapFixed (const SCOTCH.Graph * grafptr,
const SCOTCH_Arch = archptr,

const SCOTCH_Num =* parotab,
const double emraval,
const SCOTCH_Num =* vmlotab,
const SCOTCH._Strat = straptr,
SCOTCH_Num = parttab)
scotchfgraphremapfixed (doubleprecision (x) grafdat,
doubleprecision (x) archdat,
integer*num (*) parotab,
doubleprecision emraval,
integer*num (*) vmlotab,
doubleprecision (x*) stradat,
integerxnum (x) parttab,
integer ierr)

Description

The SCOTCH.graphRemapFixed routine computes a remapping of the
source graph structure pointed to by grafptr onto the target architec-
ture pointed to by archptr, based on the old partition array pointed to
by parotab, using the mapping strategy pointed to by straptr (as defined
in Section 8.3.2), and fills the array pointed to by parttab with the mapping
data regarding vertices which have not been pre-assigned by the user.

The parotab array stores the old partition that is used to compute migration
costs. Every cell contains values from 0 to the number of target vertices minus
1, or —1 for vertices that did not belong to the old partition (e.g., vertices

117

newly created by graph adaptation, which can be placed at no cost before
their associated data is interpolated).

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-
munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source graph.
It must also have been filled in advance by the user, with data indicating
whether vertices have been already pre-assigned to a fixed position or are to
be processed by the routine. In each cell of the parttab array, a value of —1
indicates that the vertex is movable, while a value between 0 and the number
of target vertices minus 1 indicates that the vertex has been pre-assigned to
the given part.

On return, every cell of the mapping array that contained a —1 will hold
the number of the target vertex to which the corresponding source vertex is
mapped. The numbering of target values is mot based: target vertices are
numbered from 0 to the number of target vertices minus 1. This semantics
aims at complying with standards such as MPI, in which process ranks start
from 0.

Return values

8.8.8

SCOTCH_graphRemapF ixed returns 0 if the mapping of the graph has been
successfully computed, and 1 else. In this last case, the parttab array may
however have been partially or completely filled, with some —1’s removed, but
its contents are not significant.

SCOTCH_graphRepart

Synopsis

int SCOTCH_graphRepart (const SCOTCH_.Graph * grafptr,

const SCOTCH_Num partnbr,
const SCOTCH_Num =* parotab,
const double emraval,
const SCOTCH_Num =* vmlotab,
const SCOTCH_Strat * straptr,
SCOTCH_Num =* parttab)
scotchfgraphrepart (doubleprecision (x) grafdat,
integer*num partnbr,
integerxnum (x) parotab,
doubleprecision emraval,
integerxnum (*) vmlotab,
doubleprecision (x) stradat,
integerxnum (x) parttab,
integer ierr)

118

Description

The SCOTCH_graphRepart routine computes an edge-separated repartition,
into partnbr parts, of the source graph structure pointed to by grafptr,
based on the old partition array pointed to by parotab, using the partitioning
strategy pointed to by straptr (as defined in Section 8.3.2), and returns the
partition data in the array pointed to by parttab.

The parotab array stores the old partition that is used to compute migration
costs. Every cell contains values from 0 to the number of target vertices minus
1, or —1 for vertices that did not belong to the old partition (e.g., vertices
newly created by graph adaptation, which can be assigned to any part at no
cost before their associated data is interpolated).

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-
munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph.

On return, every cell of the mapping array holds the number of the target
vertex to which the corresponding source vertex is mapped. The numbering
of target values is mot based: target vertices are numbered from 0 to the
number of target vertices minus 1. This semantics aims at complying with
standards such as MPI, in which process ranks start from 0.

Return values

SCOTCH_graphRepart returns 0 if the graph partition has been successfully
computed, and 1 else. In the latter case, the parttab array may however
have been partially or completely filled, but its contents are not significant.

8.8.9 SCOTCH_graphRepartFixed

Synopsis

int SCOTCH_graphRepartFixed (const SCOTCH.Graph x grafptr,
const SCOTCH_Num partnbr,
const SCOTCH_Num =* parotab,
const double emraval,
const SCOTCH_Num =* vmlotab,
const SCOTCH_Strat « straptr,
SCOTCH_Num =* parttab)

119

scotchfgraphrepartfixed (doubleprecision (%) grafdat,

integer*num partnbr,
integer*xnum (*) parotab,
doubleprecision emraval,
integer*num (*) vmlotab,
doubleprecision (x*) stradat,
integer*num (*) parttab,
integer ierr)

Description

The SCOTCH._graphRepartFixed routine computes an edge-separated
repartition, into partnbr parts, of the source graph structure pointed to
by grafptr, based on the old partition array pointed to by parotab, using
the partitioning strategy pointed to by straptr (as defined in Section 8.3.2),
and fills the array pointed to by parttab with the mapping data regarding
vertices which have not been pre-assigned by the user.

The parotab array stores the old partition that is used to compute migration
costs. Every cell contains values from 0 to the number of target vertices minus
1, or —1 for vertices that did not belong to the old partition (e.g., vertices
newly created by graph adaptation, which can be assigned to any part at no
cost before their associated data is interpolated).

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-
munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source graph.
It must also have been filled in advance by the user, with data indicating
whether vertices have been already pre-assigned to a fixed position or are to
be processed by the routine. In each cell of the parttab array, a value of —1
indicates that the vertex is movable, while a value between 0 and the number
of target vertices minus 1 indicates that the vertex has been pre-assigned to
the given part.

On return, every cell of the mapping array that contained a —1 will hold
the number of the target vertex to which the corresponding source vertex is
mapped. The numbering of target values is not based: target vertices are
numbered from 0 to the number of target vertices minus 1. This semantics
aims at complying with standards such as MPI, in which process ranks start
from 0.

Return values

SCOTCH_graphRepartFixed returns 0 if the graph partition has has been
successfully computed, and 1 else. In this last case, the parttab array may
however have been partially or completely filled, with some —1’s removed, but
its contents are not significant.

120

8.9 Low-level graph partitioning, mapping and clustering
routines

All of the following routines operate on a SCOTCH_Mapping structure that contains
references to the partition and mapping arrays to be filled during the mapping or
remapping process.

8.9.1 SCOTCH_graphMapCompute

Synopsis

int SCOTCH_graphMapCompute (const SCOTCH_.Graph x grafptr,
SCOTCHMapping =* mappptr,
const SCOTCH._Strat = straptr)

scotchfgraphmapcompute (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
doubleprecision () stradat,
integer ierr)

Description

The SCOTCH_graphMapCompute routine computes a mapping on the given
SCOTCH Mapping structure pointed to by mapppt r using the mapping strat-
egy pointed to by stratptr.

On return, every cell of the mapping array defined by SCOTCH_.mapInit holds
the number of the target vertex to which the corresponding source vertex is
mapped. The numbering of target values is not based: target vertices are
numbered from 0 to the number of target vertices, minus 1.

Return values

SCOTCH_graphMapCompute returns 0 if the mapping has been successfully
computed, and 1 else. In this latter case, the mapping array may however
have been partially or completely filled, but its contents are not significant.

8.9.2 SCOTCH_graphMapExit

Synopsis

void SCOTCH_graphMapExit (const SCOTCH_Graph * grafptr,
SCOTCH.Mapping =* mappptr)

scotchfgraphmapexit (doubleprecision (x) grafdat,
doubleprecision (x) mappdat)

Description

The SCOTCH_graphMapExit function frees the contents of a SCOTCH_
Mapping structure previously initialized by SCOTCH_graphMapInit. All
subsequent calls to SCOTCH_graphMap* routines other than SCOTCH_graph
MapInit, using this structure as parameter, may yield unpredictable results.

121

8.9.3 SCOTCH_graphMapFixedCompute

Synopsis

int SCOTCH_graphMapFixedCompute (const SCOTCH_.Graph * grafptr,
SCOTCH_Mapping = mappptr,
const SCOTCH_Strat = straptr)

scotchfgraphmapfixedcompute (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
doubleprecision () stradat,
integer ierr)

Description

The SCOTCH_graphMapFixedCompute routine computes a mapping on the
given SCOTCH Mapping structure pointed to by mappptr using the mapping
strategy pointed to by stratptr. The mapping must have been built so that
its partition array has been filled in advance by the user, with data indicating
whether vertices have been already pre-assigned to a fixed position or are to
be processed by the routine. In each cell of the parttab array, a value of —1
indicates that the vertex is movable, while a value between 0 and the number
of target vertices minus 1 indicates that the vertex has been pre-assigned to
the given part.

On return, every cell of the mapping array defined by SCOTCH.mapInit
that contained a —1 will hold the number of the target vertex to which the
corresponding source vertex is mapped. The numbering of target values is not
based: target vertices are numbered from 0 to the number of target vertices,
minus 1.

Return values
SCOTCH_graphMapFixedCompute returns 0 if the mapping has been suc-
cessfully computed, and 1 else. In this latter case, the mapping array may
however have been partially or completely filled, with some —1’s removed, but
its contents are not significant.

8.9.4 SCOTCH_graphMapInit

Synopsis

int SCOTCH._graphMapInit (const SCOTCH_Graph * grafptr,

SCOTCH_Mapping =* mappptr,
const SCOTCH_Arch x archptr,
SCOTCH_Num =* parttab)
scotchfgraphmapinit (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
doubleprecision (x*) archdat,
integerxnum (x) parttab,
integer ierr)

122

Description

The SCOTCH_graphMapInit routine fills the mapping structure pointed to
by mappptr with all of the data that is passed to it. Thus, all subsequent calls
to ordering routines such as SCOTCH_graphMapCompute, using this mapping
structure as parameter, will place mapping results in field parttab.

parttab is the pointer to an array of as many SCOTCH_Nums as there are
vertices in the graph pointed to by grafptr, and which will receive the
indices of the vertices of the target architecture pointed to by archptr.

It should be the first function to be called upon a SCOTCH_Mapping structure.
When the mapping structure is no longer of use, call function SCOTCH_graph
MapExit to free its internal structures.

Return values

SCOTCH_graphMapInit returns 0 if the mapping structure has been suc-
cessfully initialized, and 1 else.

8.9.5 SCOTCH_graphMapLoad

Synopsis

int SCOTCH_graphMapLoad (const SCOTCH_Graph » grafptr,

SCOTCH_Mapping =* mappptr,
FILE »* stream)
scotchfgraphmapload (doubleprecision (*x) grafdat,
doubleprecision (x) mappdat,
integer fildes,
integer ierr)

Description

The SCOTCH_graphMapLoad routine fills the SCOTCH Mapping structure
pointed to by mappptr with the mapping data available in the SCOTCH map-
ping format (see section 6.5) from stream stream. If the source graph has
vertex labels attached to its vertices, mapping indices in the input stream are
assumed to be vertex labels as well.

Users willing to have subsequent access to the partition data rather than to
fill an opaque SCOTCH Mapping structure are invited to use the SCOTCH_
graphTabLoad routine instead.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mapping file.

Return values

SCOTCH_graphMapLoad returns 0 if the mapping structure has been suc-
cessfully loaded from stream, and 1 else.

123

8.9.6

SCOTCH_graphMapSave

Synopsis
int SCOTCH_graphMapSave (const SCOTCH_Graph = grafptr,
const SCOTCH.Mapping * mappptr,
FILE » stream)
scotchfgraphmapsave (doubleprecision (*x) grafdat,
doubleprecision (x) mappdat,
integer fildes,
integer ierr)
Description

The SCOTCH_graphMapSave routine saves the contents of the SCOTCH_
Mapping structure pointed to by mappptr to stream st ream, in the SCOTCH
mapping format (see section 6.5).

Users willing to save a partition data array rather than an opaque SCOTCH_
Mapping structure are invited to use the SCOTCH_graphTabSave routine
instead.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mapping file.

Return values

SCOTCH_graphMapSave returns 0 if the mapping structure has been suc-
cessfully written to stream, and 1 else.

8.9.7 SCOTCH_graphMapView
Synopsis
int SCOTCH_graphMapView (const SCOTCH_Graph = grafptr,
const SCOTCH.Mapping * mappptr,
FILE = stream)
scotchfgraphmapview (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
integer fildes,
integer ierr)
Description

The SCOTCH.-graphMapView routine summarizes statistical information on
the mapping pointed to by mappptr (load of target processors, number of
neighboring domains, average dilation and expansion, edge cut size, distribu-
tion of edge dilations), and prints these results to stream stream.

124

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the output data file.

Return values

SCOTCH_graphMapView returns 0 if the data has been successfully written
to stream, and 1 else.

8.9.8 SCOTCH_graphRemapCompute
Synopsis
int SCOTCH_graphRemapCompute (const SCOTCH.Graph % grafptr,
SCOTCH Mapping =* mappptr,
SCOTCH_Mapping =* mapoptr,
const double emraval,
const SCOTCH_Num =* vmlotab,
const SCOTCH_Strat = straptr)
scotchfgraphremapcompute (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
doubleprecision (x) mapodat,
doubleprecision emraval,
integerxnum (x) vmlotab,
doubleprecision () stradat,
integer ierr)
Description

The SCOTCH_graphRemapCompute routine computes a mapping on the
given SCOTCH_Mapping structure pointed to by mappptr, using the map-
ping strategy pointed to by stratptr, and accounting for migration costs
computed based on the already computed partition pointed to by mapoptr.
This partition should have been created from the same graph and target ar-
chitecture as the one pointer to by mappptr.

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-
munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

On return, every cell of the new mapping array defined by SCOTCH. mapInit
holds the number of the target vertex to which the corresponding source vertex
is mapped. The numbering of target values is not based: target vertices are
numbered from 0 to the number of target vertices, minus 1.

Return values

SCOTCH_graphRemapCompute returns 0 if the remapping has been success-
fully computed, and 1 else. In this latter case, the mapping array may however
have been partially or completely filled, but its contents are not significant.

125

8.9.9

SCOTCH_graphRemapFixedCompute

Synopsis

int SCOTCH_graphRemapFixedCompute (const SCOTCH_.Graph x= grafptr,
SCOTCH_Mapping = mappptr,
SCOTCH.Mapping =* mapoptr,
const double emraval,
const SCOTCH_Num =* vmlotab,
const SCOTCH_Strat x straptr)
scotchfgraphremapfixedcompute (doubleprecision (x) grafdat,
doubleprecision (x) mappdat,
doubleprecision (%) mapodat,
doubleprecision emraval,
integerxnum (x) vmlotab,
doubleprecision (x) stradat,
integer ierr)

Description

The SCOTCH_graphRemapF ixedCompute routine computes a mapping on
the given SCOTCH_Mapping structure pointed to by mappptr, using the map-
ping strategy pointed to by stratptr, and accounting for migration costs
computed based on the already computed partition pointed to by mapoptr.
This partition should have been created from the same graph and target ar-
chitecture as the one pointer to by mappptr.

The partition array of the mapping pointed to by mappptr must have been
filled in advance by the user, with data indicating whether vertices have been
already pre-assigned to a fixed position or are to be processed by the routine.
A value of —1 indicates that the vertex is movable, while a value between 0
and the number of target vertices minus 1 indicates that the vertex has been
pre-assigned to the given part.

With every source graph vertex is associated an individual integer migration
cost, stored in the vmlotab array. These costs are accounted for in the com-
munication cost function to minimize as multiples of the individual migration
cost emraval. Since this value is provided as a floating point number, migra-
tion costs can be set as fractions or as non-integer multiples of the cut metric
communication costs stored as integer edge loads.

On return, every cell of the new mapping array defined by SCOTCH.mapInit
that contained a —1 holds the number of the target vertex to which the cor-
responding source vertex is mapped. The numbering of target values is not
based: target vertices are numbered from 0 to the number of target vertices,
minus 1.

Return values

SCOTCH_graphRemapFixedCompute returns 0 if the remapping has been
successfully computed, and 1 else. In this latter case, the mapping array may
however have been partially or completely filled, with some —1’s removed, but
its contents are not significant.

126

8.9.10 SCOTCH_graphTabLoad

Synopsis

int SCOTCH_graphTabLoad (const SCOTCH_-Graph * grafptr,
SCOTCH_Num =* parttab,
FILE = stream)

scotchfgraphtabload (doubleprecision (*x) grafdat,

integerxnum (x) parttab,
integer fildes,
integer ierr)

Description

The SCOTCH_graphTabLoad routine fills the part array pointed to by
parttab with the mapping data available in the SCOTCH mapping format
(see section 6.5) from stream stream.

This routine allows users to fill plain partition arrays rather than opaque
mapping structures, as routine SCOTCH_graphMapLoad does.

The parttab array should have been previously allocated, of a size sufficient
to hold as many SCOTCH_Num integers as there are vertices in the source
graph. Upon completion, array cells contain the indices of the parts to which
vertices belong according to the input mapping stream, or -1 if they were not
mentioned in the stream. If the source graph has vertex labels attached to its
vertices, mapping indices in the input stream are assumed to be vertex labels
as well.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mapping file.

Return values

SCOTCH_graphTabLoad returns 0 if the part array has been successfully
loaded from stream, and 1 else.

8.9.11 SCOTCH_graphTabSave

Synopsis

int SCOTCH_graphTabSave (const SCOTCH_Graph * grafptr,

SCOTCH_Num * parttab,
FILE = stream)
scotchfgraphtabsave (doubleprecision (*) grafdat,
integerxnum (x) parttab,
integer fildes,
integer ierr)

Description

127

The SCOTCH_graphTabSave routine saves to stream stream the contents
of the part array pointed to by parttab, on the form of mapping data in the
SCOTCH mapping format (see section 6.5).

This routine allows users to save plain partition arrays rather than opaque
mapping structures, as routine SCOTCH_graphMapSave does.

Upon completion, the produced mapping file contain the indices of the parts
to which vertices belong according to the given part array. If the source graph
has vertex labels attached to its vertices, mapping indices in the output stream
are replaced by the vertex labels.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mapping file.

Return values

SCOTCH_graphTabSave returns 0 if the part array has been successfully
saved to stream, and 1 else.
8.10 High-level graph ordering routines
This routine provides high-level functionality and frees the user from the burden of
calling in sequence several of the low-level routines described in the next section.
8.10.1 SCOTCH_graphOrder

Synopsis

int SCOTCH_graphOrder (const SCOTCH_Graph * grafptr,
const SCOTCH_Strat * straptr,

SCOTCH_Num =* permtab,
SCOTCH_Num =* peritab,
SCOTCH_Num =* cblkptr,
SCOTCH_Num =* rangtab,
SCOTCH_Num =* treetab)
scotchfgraphorder (doubleprecision (%) grafdat,
doubleprecision (x) stradat,
integer*xnum (x) permtab,
integerxnum (*) peritab,
integerxnum cblknbr,
integerxnum (x) rangtab,
integerxnum (*) treetab,
integer ierr)

Description

The SCOTCH_graphOrder routine computes a block ordering of the un-
knowns of the symmetric sparse matrix the adjacency structure of which is
represented by the source graph structure pointed to by grafptr, using
the ordering strategy pointed to by stratptr, and returns ordering data in

128

the scalar pointed to by cblkptr and the four arrays permtab, peritab,
rangtab and treetab.

The permtab, peritab, rangtab and treetab arrays should have been
previously allocated, of a size sufficient to hold as many SCOTCH_Num integers
as there are vertices in the source graph, plus one in the case of rangtab. Any
of the five output fields can be set to NULL if the corresponding information
is not needed. Since, in Fortran, there is no null reference, passing a reference
to grafptr in these fields will have the same effect.

On return, permtab holds the direct permutation of the unknowns, that
is, vertex i of the original graph has index permtab[¢] in the reordered
graph, while peritab holds the inverse permutation, that is, vertex ¢ in
the reordered graph had index peritab (4] in the original graph. All of
these indices are numbered according to the base value of the source graph:
permutation indices are numbered from baseval to vertnbr + baseval — 1,
that is, from 0 to vertnbr — 1 if the graph base is 0, and from 1 to vertnbr
if the graph base is 1.

The three other result fields, xcblkptr, rangtab and treetab, contain
data related to the block structure. *cblkptr holds the number of column
blocks of the produced ordering, and rangtab holds the starting indices of
each of the permuted column blocks, in increasing order, so that column block
i starts at index rangtab [¢] and ends at index (rangtabli+1]—1), inclusive,
in the new ordering. treetab holds the separators tree structure, that is,
treetab[¢] is the index of the father of column block 7 in the separators
tree, or —1 if column block i is the root of the separators tree. Please refer to
Section 8.2.5 for more information.

Return values

SCOTCH_graphOrder returns 0 if the ordering of the graph has been suc-
cessfully computed, and 1 else. In this last case, the rangtab, permtab,
and peritab arrays may however have been partially or completely filled,
but their contents are not significant.

8.11 Low-level graph ordering routines

All of the following routines operate on a SCOTCH_Ordering structure that con-
tains references to the permutation arrays to be filled during the graph ordering
process.

8.11.1 SCOTCH_graphOrderCheck

Synopsis
int SCOTCH_graphOrderCheck (const SCOTCH _Graph x grafptr,
const SCOTCH.Ordering * ordeptr)
scotchfgraphordercheck (doubleprecision (x) grafdat,
doubleprecision () ordedat,
integer ierr)
Description

129

The SCOTCH_graphOrderCheck routine checks the consistency of the given

SCOTCH_Ordering structure pointed to by ordeptr.

Return values

SCOTCH_graphOrderCheck returns 0 if ordering data are consistent, and 1

else.

8.11.2 SCOTCH_graphOrderCompute

Synopsis

int SCOTCH_graphOrderCompute (const SCOTCH.Graph % grafptr,
SCOTCH_.Ordering = ordeptr,
const SCOTCH._Strat x straptr)

scotchfgraphordercompute (doubleprecision (x) grafdat,
doubleprecision (x) ordedat,
doubleprecision () stradat,
integer ierr)
Description

The SCOTCH_graphOrderCompute routine computes a block ordering of the
graph structure pointed to by grafptr, using the ordering strategy pointed
to by stratptr, and stores its result in the ordering structure pointed to by
ordeptr.

On return, the ordering structure holds a block ordering of the given graph
(see section 8.11.5 for a description of the ordering fields).

Return values
SCOTCH_graphOrderCompute returns 0 if the ordering has been success-
fully computed, and 1 else. In this latter case, the ordering arrays may however
have been partially or completely filled, but their contents are not significant.

8.11.3 SCOTCH_graphOrderComputeList

Synopsis

int SCOTCH_graphOrderComputelList (const SCOTCH_-Graph » grafptr,
SCOTCH_.Ordering = ordeptr,
SCOTCH_Num listnbr,
SCOTCH_Num =* listtab,
const SCOTCH_Strat = straptr)
scotchfgraphordercomputelist (doubleprecision (x) grafdat,
doubleprecision (x) ordedat,
integerxnum listnbr,
integerxnum (*) listtab,
doubleprecision (x) stradat,
integer ierr)

130

Description

The SCOTCH_graphOrderComputelList routine computes a block order-
ing of a subgraph of the graph structure pointed to by grafptr, using the
ordering strategy pointed to by stratptr, and stores its result in the or-
dering structure pointed to by ordeptr. The induced subgraph is described
by means of a vertex list: 1istnbr holds the number of vertices to keep in
the induced subgraph, the indices of which are given, in any order, in the
listtab array.

On return, the ordering structure holds a block ordering of the induced sub-
graph (see section 8.2.5 for a description of the ordering fields). To compute
this ordering, graph ordering methods such as the minimum degree and mini-
mum fill methods will base on the original degree of the induced graph vertices,
their non-induced neighbors being considered as halo vertices (see Section 4.4
for more information on halo vertices).

Because an ordering always refers to the full graph, the ordering computed
by SCOTCH_graphOrderComputeList is divided into two distinct parts:
the induced graph vertices are ordered by applying to the induced graph
the strategy provided by the stratptr parameter, while non-induced vertex
are ordered consecutively with the highest available indices. Consequently,
the permuted indices of induced vertices range from baseval to (1istnbr +
baseval — 1), while the permuted indices of the remaining vertices range from
(listnbr + baseval) to (vertnbr + baseval — 1), inclusive. The separation
tree yielded by SCOTCH_graphOrderComputeList reflects this property: it
is made of two branches, the first one corresponding to the induced subgraph,
and the second one to the remaining vertices. Since these two subgraphs are
not considered to be connected, both will have their own root, represented by
a —1 value in the treetab array of the ordering.

Return values
SCOTCH_graphOrderComputeList returns O if the ordering has been suc-
cessfully computed, and 1 else. In this latter case, the ordering arrays may
however have been partially or completely filled, but their contents are not
significant.

8.11.4 SCOTCH_graphOrderExit

Synopsis

void SCOTCH_graphOrderExit (const SCOTCH_-Graph x= grafptr,

SCOTCH.Ordering = ordeptr)
scotchfgraphorderexit (doubleprecision (x) grafdat,
doubleprecision (x) ordedat)

Description

The SCOTCH_graphOrderExit function frees the contents of a SCOTCH_
Ordering structure previously initialized by SCOTCH_graphOrderInit.

131

All subsequent calls to SCOTCH_graphOrder« routines other than SCOTCH_
graphOrderInit, using this structure as parameter, may yield unpre-
dictable results.

8.11.5 SCOTCH_graphOrderInit

Synopsis

int SCOTCH_graphOrderInit (const SCOTCH_Graph % grafptr,

SCOTCH_Ordering = ordeptr,
SCOTCH_Num «* permtab,
SCOTCH_Num =* peritab,
SCOTCH_Num =* cblkptr,
SCOTCH_Num =* rangtab,
SCOTCH_Num =* treetab)
scotchfgraphorderinit (doubleprecision (x) grafdat,
doubleprecision () ordedat,
integerxnum (x) permtab,
integer*num (%) peritab,
integer*xnum cblknbr,
integerxnum (x) rangtab,
integer*num (*) treetab,
integer ierr)

Description

The SCOTCH_graphOrderInit routine fills the ordering structure pointed
to by ordeptr with all of the data that are passed to it. Thus, all subsequent
calls to ordering routines such as SCOTCH_graphOrderCompute, using this
ordering structure as parameter, will place ordering results in fields permtab,
peritab, xcblkptr, rangtab or treetab, if they are not set to NULL.

permtab is the ordering permutation array, of size vertnbr, peritab is the
inverse ordering permutation array, of size vertnbr, cblkptr is the pointer
to a SCOTCH_Num that will receive the number of produced column blocks,
rangtab is the array that holds the column block span information, of size
vertnbr+1, and treetab is the array holding the structure of the separators
tree, of size vertnbr. See the above manual page of SCOTCH_graphOrder,
as well as section 8.2.5, for an explanation of the semantics of all of these
fields.

The SCOTCH_graphOrderInit routine should be the first function to be
called upon a SCOTCH_.Ordering structure for ordering graphs. When the
ordering structure is no longer of use, the SCOTCH_graphOrderExit func-
tion must be called, in order to to free its internal structures.

Return values

SCOTCH_graphOrderInit returns O if the ordering structure has been suc-
cessfully initialized, and 1 else.

132

8.11.6 SCOTCH_graphOrderLoad

Synopsis

int SCOTCH_graphOrderLoad (const SCOTCH_Graph = grafptr,

SCOTCH_Ordering = ordeptr,
FILE » stream)
scotchfgraphorderload (doubleprecision (x) grafdat,
doubleprecision (x*) ordedat,
integer fildes,
integer ierr)

Description

The SCOTCH_graphOrderLoad routine fills the SCOTCH_ Ordering struc-
ture pointed to by ordeptr with the ordering data available in the SCOTCH
ordering format (see section 6.6) from stream stream.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the ordering file.

Return values

SCOTCH_graphOrderLoad returns 0 if the ordering structure has been suc-
cessfully loaded from stream, and 1 else.

8.11.7 SCOTCH_graphOrderSave

Synopsis
int SCOTCH_graphOrderSave (const SCOTCH_Graph =* grafptr,
const SCOTCH.Ordering x ordeptr,
FILE = stream)
scotchfgraphordersave (doubleprecision (x) grafdat,
doubleprecision (x*) ordedat,
integer fildes,
integer ierr)
Description

The SCOTCH_graphOrderSave routine saves the contents of the SCOTCH_
Ordering structure pointed to by ordeptr to stream stream, in the
ScoTcH ordering format (see section 6.6).

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the ordering file.

Return values

SCOTCH_graphOrderSave returns 0 if the ordering structure has been suc-
cessfully written to stream, and 1 else.

133

8.11.8 SCOTCH_graphOrderSaveMap

Synopsis
int SCOTCH_graphOrderSaveMap (const SCOTCH_Graph = grafptr,
const SCOTCH.Ordering x ordeptr,
FILE = stream)
scotchfgraphordersavemap (doubleprecision (%) grafdat,
doubleprecision (x) ordedat,
integer fildes,
integer ierr)
Description

The SCOTCH_graphOrderSaveMap routine saves the block partitioning data
associated with the SCOTCH_Ordering structure pointed to by ordeptr to
stream stream, in the SCOTCH mapping format (see section 6.5). A target
domain number is associated with every block, such that all node vertices
belonging to the same block are shown as belonging to the same target ver-
tex. The resulting mapping file can be used by the gout program (see Sec-
tion 7.4.12) to produce pictures showing the different separators and blocks.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mapping file.

Return values

SCOTCH_graphOrderSaveMap returns 0 if the ordering structure has been
successfully written to stream, and 1 else.

8.11.9 SCOTCH_graphOrderSaveTree

Synopsis
int SCOTCH_graphOrderSaveTree (const SCOTCH_Graph = grafptr,
const SCOTCH.Ordering x ordeptr,
FILE = stream)
scotchfgraphordersavetree (doubleprecision (%) grafdat,
doubleprecision () ordedat,
integer fildes,
integer ierr)
Description

The SCOTCH_graphOrderSaveTree routine saves the tree hierarchy in-
formation associated with the SCOTCH_.Ordering structure pointed to by
ordeptr to stream stream.

The format of the tree output file resembles the one of a mapping or ordering
file: it is made up of as many lines as there are vertices in the ordering. Each

134

of these lines holds two integer numbers. The first one is the index or the
label of the vertex, and the second one is the index of its parent node in the
separators tree, or —1 if the vertex belongs to a root node.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the tree mapping file.

Return values

SCOTCH_graphOrderSaveTree returns 0 if the separators tree structure
has been successfully written to stream, and 1 else.

8.12 Mesh handling routines
8.12.1 SCOTCH.meshAlloc

Synopsis

SCOTCH Mesh * SCOTCH.meshAlloc (void)

Description

The SCOTCH.meshAlloc function allocates a memory area of a size sufficient
to store a SCOTCH_Mesh structure. It is the user’s responsibility to free this
memory when it is no longer needed, using the SCOTCH.memFree routine.
The allocated space must be initialized before use, by means of the SCOTCH_
meshInit routine.

Return values

SCOTCH.meshAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.12.2 SCOTCH.meshBuild

Synopsis
int SCOTCH.meshBuild (SCOTCH Mesh = meshptr,
const SCOTCH_Num velmbas,
const SCOTCH_Num vnodbas,
const SCOTCH_Num velmnbr,
const SCOTCH_Num vnodnbr,

const SCOTCH.Num * verttab,
const SCOTCH_Num % vendtab,
const SCOTCH.Num * velotab,
const SCOTCH.Num = vnlotab,
const SCOTCH.Num = vlbltab,
const SCOTCH_Num edgenbr,
const SCOTCH.Num * edgetab)

135

scotchfmeshbuild (doubleprecision (%) meshdat,

integer*num velmbas,
integerxnum vnodbas,
integerxnum velmnbr,
integerxnum vnodnbr,
integerxnum (*) verttab,
integerxnum (%) vendtab,
integerxnum (%) velotab,
integerxnum (x) vnlotab,
integerxnum (*) vlibltab,
integerxnum edgenbr,
integerxnum (x) edgetab,
integerxnum ierr)

Description

The SCOTCH.meshBuild routine fills the source mesh structure pointed to
by meshptr with all of the data that is passed to it.

velmbas and vnodbas are the base values for the element and node ver-
tices, respectively. velmnbr and vnodnbr are the number of element and
node vertices, respectively, such that either velmbas + velmnbr = vnodnbr or
vnodbas + vnodnbr = velmnbr holds, and typically min(velmbas, vnodbas) is
0 for structures built from C and 1 for structures built from Fortran. verttab
is the adjacency index array, of size (velmnbr + vnodnbr + 1) if the edge ar-
ray is compact (that is, if vendtab equals vendtab + 1 or NULL), or of size
(velmnbr + vnodnbr) else. vendtab is the adjacency end index array, of size
(velmnbr + vnodnbr) if it is disjoint from verttab. velotab is the element
vertex load array, of size velmnbr if it exists. vnlotab is the node vertex
load array, of size vnodnbr if it exists. vibltab is the vertex label array, of
size (velmnbr + vnodnbr) if it exists. edgenbr is the number of arcs (that is,
twice the number of edges). edgetab is the adjacency array, of size at least
edgenbr (it can be more if the edge array is not compact).

The vendtab, velotab, vnlotab and vibltab arrays are optional, and
a NULL pointer can be passed as argument whenever they are not defined.
Since, in Fortran, there is no null reference, passing the scotchfmeshbuild
routine a reference equal to verttab in the velotab, vnlotab or vlibltab
fields makes them be considered as missing arrays. Setting vendtab to refer
to one cell after verttab yields the same result, as it is the exact semantics
of a compact vertex array.

To limit memory consumption, SCOTCH.meshBuild does not copy array
data, but instead references them in the SCOTCH_Mesh structure. Therefore,
great care should be taken not to modify the contents of the arrays passed
to SCOTCH.meshBuild as long as the mesh structure is in use. Every up-
date of the arrays should be preceded by a call to SCOTCH.meshExit, to free
internal mesh structures, and eventually followed by a new call to SCOTCH_
meshBuild to re-build these internal structures so as to be able to use the
new mesh.

To ensure that inconsistencies in user data do not result in an erroneous behav-
ior of the LIBSCOTCH routines, it is recommended, at least in the development

136

stage, to call the SCOTCH_meshCheck routine on the newly created SCOTCH-
Mesh structure, prior to any other calls to LIBSCOTCH routines.

Return values

SCOTCH-meshBuild returns 0 if the mesh structure has been successfully set
with all of the input data, and 1 else.
8.12.3 SCOTCH.meshCheck

Synopsis

int SCOTCH.meshCheck (const SCOTCH.Mesh * meshptr)

scotchfmeshcheck (doubleprecision (%) meshdat,
integer ierr)

Description

The SCOTCH.meshCheck routine checks the consistency of the given
SCOTCH Mesh structure. It can be used in client applications to determine
if a mesh that has been created from used-generated data by means of the
SCOTCH-meshBuild routine is consistent, prior to calling any other routines
of the LIBSCOTCH library.

Return values

SCOTCH_.meshCheck returns 0 if mesh data are consistent, and 1 else.

8.12.4 SCOTCH._meshData

Synopsis

void SCOTCH.meshData (const SCOTCH.Mesh % meshptr,

SCOTCH_Num = vebaptr,
SCOTCH_Num =* vnbaptr,
SCOTCH_Num =* velmptr,
SCOTCH_Num =* vnodptr,
SCOTCH_Num ** verttab,
SCOTCH_Num ** vendtab,
SCOTCH_Num ** velotab,
SCOTCH_Num * % vnlotab,
SCOTCH_Num *=* vilibltab,
SCOTCH_Num =* edgeptr,
SCOTCH_Num ** edgetab,
SCOTCH_Num = degrptr)

137

scotchfmeshdata (doubleprecision (%) meshdat,

integerxnum (x) indxtab,
integerxnum velobas,
integerxnum vnlobas,
integerxnum velmnbr,
integerxnum vnodnbr,
integerx*idr vertidx,
integerx*idz vendidx,
integerxidr veloidx,
integerx*idz vnloidx,
integerx*idr vlblidx,
integer*num edgenbr,
integerx*idz edgeidx,
integerxnum degrmax)

Description

The SCOTCH.meshData routine is the dual of the SCOTCH_.meshBuild rou-
tine. It is a multiple accessor that returns scalar values and array references.

vebaptr and vnbaptr are pointers to locations that will hold the mesh
base value for elements and nodes, respectively (the minimum of these two
values is typically 0 for structures built from C and 1 for structures built from
Fortran). velmptr and vnodptr are pointers to locations that will hold the
number of element and node vertices, respectively. verttab is the pointer
to a location that will hold the reference to the adjacency index array, of
size (xvelmptr + xvnodptr + 1) if the adjacency array is compact, or of size
(*velmptr + *vnodptr) else. vendtab is the pointer to a location that will
hold the reference to the adjacency end index array, and is equal to verttab—+1
if the adjacency array is compact. velotab and vnlotab are pointers to
locations that will hold the reference to the element and node vertex load
arrays, of sizes xvelmptr and xvnodptr, respectively. vlbltab is the
pointer to a location that will hold the reference to the vertex label array, of
size (xvelmptr + xvnodptr). edgeptr is the pointer to a location that will
hold the number of arcs (that is, twice the number of edges). edgetab is the
pointer to a location that will hold the reference to the adjacency array, of
size at least edgenbr. degrptr is the pointer to a location that will hold
the maximum vertex degree computed across all element and node vertices.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow
users to access mesh arrays. The scotchfmeshdata routine is passed an
integer array, the first element of which is used as a base address from which all
other array indices are computed. Therefore, instead of returning references,
the routine returns integers, which represent the starting index of each of the
relevant arrays with respect to the base input array, or vertidx, the index
of verttab, if they do not exist. For instance, if some base array myarray
(1) is passed as parameter indxtab, then the first cell of array verttab
will be accessible as myarray (vertidx). In order for this feature to behave
properly, the indxtab array must be word-aligned with the mesh arrays.

138

This is automatically enforced on most systems, but some care should be
taken on systems that allow one to access data that is not word-aligned. On
such systems, declaring the array after a dummy doubleprecision array
can coerce the compiler into enforcing the proper alignment. Also, on 32_64
architectures, such indices can be larger than the size of a regular INTEGER.
This is why the indices to be returned are defined by means of a specific
integer type. See Section 8.1.5 for more information on this issue.

8.12.5 SCOTCH.meshExit

Synopsis

void SCOTCH.meshExit (SCOTCHMesh x meshptr)

scotchfmeshexit (doubleprecision (%) meshdat)

Description

The SCOTCH.meshExit function frees the contents of a SCOTCH_Mesh struc-
ture previously initialized by SCOTCH.meshInit. All subsequent calls to
SCOTCH_mesh~* routines other than SCOTCH_meshInit, using this structure
as parameter, may yield unpredictable results.

8.12.6 SCOTCH.meshGraph

Synopsis

int SCOTCH.meshGraph (const SCOTCH Mesh % meshptr,

SCOTCH_Graph = grafptr)
scotchfmeshgraph (doubleprecision (%) meshdat,
doubleprecision () grafdat,
integer ierr)

Description

The SCOTCH.meshGraph routine builds a graph from a mesh. It creates
in the SCOTCH_Graph structure pointed to by grafptr a graph having as
many vertices as there are nodes in the SCOTCH_Mesh structure pointed to by
meshptr, and where there is an edge between any two graph vertices if and
only if there exists in the mesh an element containing both of the associated
nodes. Consequently, all of the elements of the mesh are turned into cliques
in the resulting graph.

In order to save memory space as well as computation time, in the current
implementation of SCOTCH meshGraph, some mesh arrays are shared with
the graph structure. Therefore, one should make sure that the graph must no
longer be used after the mesh structure is freed. The graph structure can be
freed before or after the mesh structure, but must not be used after the mesh
structure is freed.

139

Return values

SCOTCH-meshGraph returns 0 if the graph structure has been successfully
allocated and filled, and 1 else.
8.12.7 SCOTCH.meshGraphDual

Synopsis

int SCOTCH.meshGraphDual (const SCOTCH Mesh x meshptr,
SCOTCH_Graph =« grafptr,
const SCOTCH_Num nocoval)

scotchfmeshgraphdual (doubleprecision (x) meshdat,

doubleprecision (x) grafdat,
integer nocoval,
integer ierr)

Description

The SCOTCH-meshGraphDual routine builds a dual graph (i.e., an element
graph) from a mesh. It creates, in the SCOTCH_Graph structure pointed to
by grafptr, a graph having as many vertices as there are elements in the
SCOTCH _Mesh structure pointed to by meshptr, and such that there exists
an edge between any two graph vertices if there are at least nocoval nodes
in common between the two corresponding elements in the source mesh, or if
an element shares all of its nodes, minus one, with another element.

Return values

SCOTCH.meshGraphDual returns 0 if the graph structure has been success-
fully allocated and filled, and 1 else.
8.12.8 SCOTCH.meshInit

Synopsis

int SCOTCH.meshInit (SCOTCH_Mesh * meshptr)

scotchfmeshinit (doubleprecision (%) meshdat,
integer ierr)

Description

The SCOTCH-meshInit function initializes a SCOTCH Mesh structure so as
to make it suitable for future operations. It should be the first function to be
called upon a SCOTCH_Mesh structure. When the mesh data is no longer of
use, call function SCOTCH meshExit to free its internal structures.

Return values

SCOTCH.meshInit returns 0 if the mesh structure has been successfully ini-
tialized, and 1 else.

140

8.12.9 SCOTCH_meshLoad

Synopsis

int SCOTCH.meshLoad (SCOTCH Mesh * meshptr,

FILE = stream,

SCOTCH_Num baseval)
scotchfmeshload (doubleprecision (%) meshdat,
integer fildes,
integer*num baseval,

integer ierr)

Description

The SCOTCH.meshLoad routine fills the SCOTCH Mesh structure pointed to
by meshptr with the source mesh description available from stream stream
in the SCOTCH mesh format (see section 6.2).

To ease the handling of source mesh files by programs written in C as well as
in Fortran, The base value of the mesh to read can be set to 0 or 1, by setting
the baseval parameter to the proper value. A value of —1 indicates that the
mesh base should be the same as the one provided in the mesh description
that is read from stream.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mesh file.

Return values

SCOTCH.meshLoad returns 0 if the mesh structure has been successfully al-
located and filled with the data read, and 1 else.

8.12.10 SCOTCH_meshSave

Synopsis

int SCOTCH.meshSave (const SCOTCH Mesh % meshptr,

FILE = stream)
scotchfmeshsave (doubleprecision (%) meshdat,
integer fildes,
integer ierr)

Description

The SCOTCH.meshSave routine saves the contents of the SCOTCH.Mesh
structure pointed to by meshptr to stream stream, in the SCOTCH mesh
format (see section 6.2).

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the mesh file.

141

Return values

SCOTCH-meshSave returns 0 if the mesh structure has been successfully writ-
ten to stream, and 1 else.

8.12.11 SCOTCH._meshSize

Synopsis

void SCOTCH.meshSize (const SCOTCH.Mesh * meshptr,

SCOTCH_Num =* velmptr,
SCOTCH_Num = vnodptr,
SCOTCH_Num =« edgeptr)
scotchfmeshsize (doubleprecision (%) meshdat,
integerxnum velmnbr,
integer*num vnodnbr,
integerxnum edgenbr)

Description

The SCOTCH.meshSize routine fills the three areas of type SCOTCH_Num
pointed to by velmptr, vnodptr and edgeptr with the number of element
vertices, node vertices and arcs (that is, twice the number of edges) of the
given mesh pointed to by meshptr, respectively.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

This routine is useful to get the size of a mesh read by means of the SCOTCH_
meshLoad routine, in order to allocate auxiliary arrays of proper sizes. If the
whole structure of the mesh is wanted, function SCOTCH_meshData should
be preferred.

8.12.12 SCOTCH_meshSizeof

Synopsis

int SCOTCH_meshSizeof (void)

scotchfmeshsizeof (integer size)

Description

The SCOTCH.meshSizeof routine returns the size, in bytes, of a SCOTCH_
Mesh structure. This information is useful to export the interface of the LIB-
SCOTCH to interpreted languages, without access to the “scotch.h” include
file.

142

8.12.13 SCOTCH._meshStat

Synopsis

void SCOTCH._meshStat

scotchfmeshstat

Description

The SCOTCH-meshStat routine produces some statistics regarding the mesh
structure pointed to by meshptr. vnlomin, vnlomax, vnlosum, vnloavg
and vnlodlt are the minimum node vertex load, the maximum node ver-
tex load, the sum of all node vertex loads, the average node vertex load,
and the variance of the node vertex loads, respectively. edegmin, edegmax,
edegavg and edegdlt are the minimum element vertex degree, the max-
imum element vertex degree, the average element vertex degree, and the
variance of the element vertex degrees, respectively. ndegmin, ndegmax,
ndegavg and ndegdlt are the minimum node vertex degree, the maximum
node vertex degree, the average node vertex degree, and the variance of the

SCOTCH_Num

*

SCOTCH_Num =

SCOTCH_Num
double =*
double =*
SCOTCH_Num
SCOTCH_Num
double =*
double =*
SCOTCH_Num
SCOTCH_Num
double =*
double x*

(doubleprecision
integer*xnum
integerxnum
integerxnum
doubleprecision
doubleprecision
integerxnum
integer*xnum
doubleprecision
doubleprecision
integer*num
integer*num
doubleprecision
doubleprecision

node vertex degrees, respectively.

143

(const SCOTCH_Mesh x

meshptr,

vnlominptr,
vnlomaxptr,
vnlosumptr,
vnloavgptr,
vnlodltptr,
edegminptr,
edegmaxptr,
edegavgptr,
edegdltptr,
ndegminptr,
ndegmaxptr,
ndegavgptr,
ndegdltptr)

meshdat,
vnlomin,
vnlomax,
vnlosum,
vnloavg,
vnlodlt,
edegmin,
edegmax,
edegavg,
edegdlt,
ndegmin,
ndegmax,
ndegavg,
ndegdlt)

8.13 High-level mesh ordering routines

This routine provides high-level functionality and frees the user from the burden of
calling in sequence several of the low-level routines described afterward.

8.13.1 SCOTCH.meshOrder

Synopsis

int SCOTCH.meshOrder (const SCOTCH Mesh * meshptr,
const SCOTCH_Strat * straptr,

SCOTCH_Num = permtab,
SCOTCH_Num =* peritab,
SCOTCH_Num * cblkptr,
SCOTCH_Num =* rangtab,
SCOTCH_Num * treetab)

scotchfmeshorder (doubleprecision (%) meshdat,

doubleprecision (x) stradat,
integerxnum (x) permtab,
integerxnum (*) peritab,
integerxnum cblknbr,
integerxnum (x) rangtab,
integerxnum (%) treetab,
integer ierr)

Description

The SCOTCH.meshOrder routine computes a block ordering of the unknowns
of the symmetric sparse matrix the adjacency structure of which is represented
by the elements that connect the nodes of the source mesh structure pointed
to by meshptr, using the ordering strategy pointed to by stratptr, and
returns ordering data in the scalar pointed to by cblkptr and the four arrays
permtab, peritab, rangtab and treetab.

The permtab, peritab, rangtab and treetab arrays should have been
previously allocated, of a size sufficient to hold as many SCOTCH_Num integers
as there are node vertices in the source mesh, plus one in the case of rangtab.
Any of the five output fields can be set to NULL if the corresponding infor-
mation is not needed. Since, in Fortran, there is no null reference, passing a
reference to meshptr in these fields will have the same effect.

On return, permtab holds the direct permutation of the unknowns, that is,
node vertex ¢ of the original mesh has index permtab[¢] in the reordered
mesh, while peritab holds the inverse permutation, that is, node vertex i
in the reordered mesh had index peritab[¢] in the original mesh. All of
these indices are numbered according to the base value of the source mesh:
permutation indices are numbered from min(velmbas, vnodbas) to vnodnbr +
min(velmbas, vnodbas) — 1, that is, from 0 to vnodnbr — 1 if the mesh base
is 0, and from 1 to vnodnbr if the mesh base is 1. The base value for mesh
orderings is taken as min(velmbas, vnodbas), and not just as vnodbas, such
that orderings that are computed on some mesh have exactly the same index

144

range as orderings that would be computed on the graph obtained from the
original mesh by means of the SCOTCH_meshGraph routine.

The three other result fields, rcblkptr, rangtab and treetab, contain
data related to the block structure. *cblkptr holds the number of column
blocks of the produced ordering, and rangtab holds the starting indices of
each of the permuted column blocks, in increasing order, so that column block
i starts at index rangtab [¢] and ends at index (rangtabli+1]—1), inclusive,
in the new ordering. treetab holds the separators tree structure, that is,
treetab[7] is the index of the father of column block i in the separators
tree, or —1 if column block i is the root of the separators tree. Please refer to
Section 8.2.5 for more information.

Return values

SCOTCH-meshOrder returns 0 if the ordering of the mesh has been success-
fully computed, and 1 else. In this last case, the rangtab, permtab, and
peritab arrays may however have been partially or completely filled, but
their contents are not significant.

8.14 Low-level mesh ordering routines

All of the following routines operate on a SCOTCH_Ordering structure that con-
tains references to the permutation arrays to be filled during the mesh ordering
process.

8.14.1 SCOTCH_meshOrderCheck

Synopsis

int SCOTCH.meshOrderCheck (const SCOTCH_Mesh = meshptr,
const SCOTCH.-Ordering % ordeptr)

scotchfmeshordercheck (doubleprecision (x) meshdat,
doubleprecision (x*) ordedat,
integer ierr)

Description

The SCOTCH.meshOrderCheck routine checks the consistency of the given
SCOTCH_Ordering structure pointed to by ordeptr.

Return values

SCOTCH.meshOrderCheck returns 0 if ordering data are consistent, and 1
else.

8.14.2 SCOTCH.meshOrderCompute

Synopsis

int SCOTCH.meshOrderCompute (const SCOTCH_Mesh = meshptr,
SCOTCH.Ordering = ordeptr,
const SCOTCH._Strat x straptr)

145

scotchfmeshordercompute (doubleprecision (%) meshdat,

doubleprecision () ordedat,
doubleprecision (x*) stradat,
integer ierr)

Description

The SCOTCH.meshOrderCompute routine computes a block ordering of the
mesh structure pointed to by grafptr, using the mapping strategy pointed
to by stratptr, and stores its result in the ordering structure pointed to by
ordeptr.

On return, the ordering structure holds a block ordering of the given mesh
(see section 8.14.4 for a description of the ordering fields).

Return values

SCOTCH-meshOrderCompute returns 0 if the ordering has been successfully
computed, and 1 else. In this latter case, the ordering arrays may however
have been partially or completely filled, but their contents are not significant.

8.14.3 SCOTCH.meshOrderExit

Synopsis

void SCOTCH.meshOrderExit (const SCOTCHMesh * meshptr,
SCOTCH.Ordering = ordeptr)

scotchfmeshorderexit (doubleprecision (x) meshdat,
doubleprecision (x) ordedat)

Description

The SCOTCH.meshOrderExit function frees the contents of a SCOTCH_
Ordering structure previously initialized by SCOTCH.meshOrderInit. All
subsequent calls to SCOTCH_.meshOrder* routines other than SCOTCH_mesh
OrderInit, using this structure as parameter, may yield unpredictable re-
sults.

8.14.4 SCOTCH.meshOrderInit

Synopsis

int SCOTCH.meshOrderInit (const SCOTCH.Mesh x meshptr,

SCOTCH.Ordering = ordeptr,
SCOTCH_Num =* permtab,
SCOTCH_Num =* peritab,
SCOTCH_Num = cblkptr,
SCOTCH_Num =* rangtab,
SCOTCH_Num =* treetab)

146

scotchfmeshorderinit (doubleprecision (x) meshdat,

doubleprecision (x) ordedat,
integerxnum (x) permtab,
integer*num (x*) peritab,
integer*num cblknbr,
integerxnum (x) rangtab,
integer*num (x*) treetab,
integer ierr)

Description

The SCOTCH.meshOrderInit routine fills the ordering structure pointed to
by ordeptr with all of the data that are passed to it. Thus, all subsequent
calls to ordering routines such as SCOTCH.meshOrderCompute, using this
ordering structure as parameter, will place ordering results in fields permtab,
peritab, *cblkptr, rangtab or treetab, if they are not set to NULL.

permtab is the ordering permutation array, of size vnodnbr, peritab is the
inverse ordering permutation array, of size vnodnbr, cblkptr is the pointer
to a SCOTCH_Num that will receive the number of produced column blocks,
rangtab is the array that holds the column block span information, of size
vnodnbr+1, and treetab is the array holding the structure of the separators
tree, of size vnodnbr. See the above manual page of SCOTCH.meshOrder, as
well as section 8.2.5, for an explanation of the semantics of all of these fields.

The SCOTCH.meshOrderInit routine should be the first function to be
called upon a SCOTCH_Ordering structure for ordering meshes. When the
ordering structure is no longer of use, the SCOTCH_.meshOrderExit function
must be called, in order to to free its internal structures.

Return values

SCOTCH.meshOrderInit returns 0 if the ordering structure has been suc-
cessfully initialized, and 1 else.

8.14.5 SCOTCH_meshOrderSave

Synopsis
int SCOTCH.meshOrderSave (const SCOTCH_Mesh = meshptr,
const SCOTCH.Ordering % ordeptr,
FILE = stream)

scotchfmeshordersave (doubleprecision (x) meshdat,

doubleprecision (x) ordedat,
integer fildes,
integer ierr)

Description

The SCOTCH.meshOrderSave routine saves the contents of the SCOTCH-
Ordering structure pointed to by ordeptr to stream stream, in the
SCOTCH ordering format (see section 6.6).

147

Return values

SCOTCH.meshOrderSave returns 0 if the ordering structure has been suc-
cessfully written to stream, and 1 else.

8.14.6 SCOTCH.meshOrderSaveMap

Synopsis
int SCOTCH.meshOrderSaveMap (const SCOTCH Mesh x meshptr,
const SCOTCH.Ordering x ordeptr,
FILE = stream)
scotchfmeshordersavemap (doubleprecision (x) meshdat,
doubleprecision (x) ordedat,
integer fildes,
integer ierr)
Description

The SCOTCH.meshOrderSaveMap routine saves the block partitioning data
associated with the SCOTCH_Ordering structure pointed to by ordeptr to
stream stream, in the SCOTCH mapping format (see section 6.5). A target
domain number is associated with every block, such that all node vertices
belonging to the same block are shown as belonging to the same target vertex.

This mapping file can then be used by the gout program (see section 7.4.12)
to produce pictures showing the different separators and blocks. Since gout
only takes graphs as input, the mesh has to be converted into a graph by
means of the gmk_msh program (see section 7.4.8).

Return values

SCOTCH.meshOrderSaveMap returns 0 if the ordering structure has been
successfully written to stream, and 1 else.

8.14.7 SCOTCH.meshOrderSaveTree

Synopsis
int SCOTCH.meshOrderSaveTree (const SCOTCH_Mesh =* meshptr,
const SCOTCH.Ordering = ordeptr,
FILE = stream)

scotchfmeshordersavetree (doubleprecision (%) meshdat,

doubleprecision () ordedat,
integer fildes,
integer ierr)

Description

148

The SCOTCH_meshOrderSaveTree routine saves the tree hierarchy informa-
tion associated with the SCOTCH_Ordering structure pointed to by ordeptr
to stream stream.

The format of the tree output file resembles the one of a mapping or ordering
file: it is made up of as many lines as there are node vertices in the ordering.
Each of these lines holds two integer numbers. The first one is the index or
the label of the node vertex, starting from baseval, and the second one is
the index of its parent node in the separators tree, or —1 if the vertex belongs
to a root node.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the tree mapping file.

Return values

SCOTCH.meshOrderSaveTree returns 0 if the separators tree structure has
been successfully written to stream, and 1 else.

8.15 Strategy handling routines

8.15.1 SCOTCH_stratAlloc

Synopsis

SCOTCH_Strat * SCOTCH_stratAlloc (void)

Description

The SCOTCH_stratAlloc function allocates a memory area of a size suffi-
cient to store a SCOTCH_Strat structure. It is the user’s responsibility to free
this memory when it is no longer needed, using the SCOTCH_memF ree routine.
The allocated space must be initialized before use, by means of the SCOTCH_
stratInit routine.

Return values

SCOTCH_stratAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.15.2 SCOTCH_stratExit

Synopsis

void SCOTCH_stratExit (SCOTCH_Strat * straptr)

scotchfstratexit (doubleprecision (%) stradat)

Description

The SCOTCH_stratExit function frees the contents of a SCOTCH_Strat
structure previously initialized by SCOTCH_stratInit. All subsequent calls

149

to SCOTCH_strat routines other than SCOTCH_stratInit, using this struc-
ture as parameter, may yield unpredictable results.

8.15.3 SCOTCH_stratInit

Synopsis

int SCOTCH._stratInit (SCOTCH_Strat » straptr)

scotchfstratinit (doubleprecision (x) stradat,
integer ierr)

Description

The SCOTCH_stratInit function initializes a SCOTCH_Strat structure so
as to make it suitable for future operations. It should be the first function
to be called upon a SCOTCH_Strat structure. When the strategy data is no
longer of use, call function SCOTCH_stratExit to free its internal structures.

Return values

SCOTCH_stratInit returns 0 if the strategy structure has been successfully
initialized, and 1 else.

8.15.4 SCOTCH_stratSave

Synopsis

int SCOTCH_stratSave (const SCOTCH_Strat * straptr,
FILE = stream)

scotchfstratsave (doubleprecision (%) stradat,
integer fildes,
integer ierr)

Description

The SCOTCH_stratSave routine saves the contents of the SCOTCH_Strat
structure pointed to by straptr to stream stream, in the form of a text
string. The methods and parameters of the strategy string depend on the type
of the strategy, that is, whether it is a bipartitioning, mapping, or ordering
strategy, and to which structure it applies, that is, graphs or meshes.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor £ildes associated with the logical unit of
the output file.

Return values

SCOTCH_stratSave returns 0 if the strategy string has been successfully
written to stream, and 1 else.

150

8.15.5 SCOTCH_stratSizeof

Synopsis

int SCOTCH_stratSizeof (void)

scotchfstratsizeof (integer size)

Description

The SCOTCH_stratSizeof routine returns the size, in bytes, of a SCOTCH_
Strat structure. This information is useful to export the interface of the LIB-

SCOTCH to interpreted languages, without access to the “scotch.h” include
file.

8.16 Strategy creation routines

Strategy creation routines parse the user-provided strategy string and populate the
given opaque strategy object with a tree-shaped structure that represents the parsed
expression. It is this structure that will be later traversed by the generic routines for
partitioning, mapping or ordering, so as to determine which specific partitioning,
mapping or ordering method to be called on a subgraph being considered.

Because strategy creation routines call third-party lexical analyzers that may
have been implemented in a non-reentrant way, no guarantee is given on the reen-
trance of these routines. Consequently, strategy creation routines that might be
called simultaneously by multiple threads should be protected by a mutex.

8.16.1 SCOTCH_stratGraphBRipart

Synopsis

int SCOTCH_stratGraphBipart (SCOTCH_Strat * straptr,

const char = string)
scotchfstratgraphbipart (doubleprecision (%) stradat,
character (x) string,

integer ierr)

Description

The SCOTCH_stratGraphBipart routine fills the strategy structure pointed
to by straptr with the graph bipartitioning strategy string pointed to by
string. From this point, the strategy structure can only be used as a graph
bipartitioning strategy, to be used by function SCOTCH_archBuild, for in-
stance.

When using the C interface, the array of characters pointed to by string
must be null-terminated.
Return values

SCOTCH_stratGraphBipart returns 0 if the strategy string has been suc-
cessfully set, and 1 else.

151

8.16.2 SCOTCH_stratGraphClusterBuild

Synopsis

int SCOTCH_stratGraphClusterBuild (SCOTCH_Strat =
const SCOTCH_Num
const SCOTCH_Num
const double
const double

scotchfstratgraphclusterbuild (doubleprecision (%)
integerxnum
integerxnum
doubleprecision
doubleprecision
integer

Description

straptr,
flagval,
pwgtmax,
densmin,
bbalval)

stradat,
flagval,
pwgtmax,
densmin,
bbalval,
ierr)

The SCOTCH_stratGraphClusterBuild routine fills the strategy struc-
ture pointed to by straptr with a default clustering strategy tuned accord-
ing to the preference flags passed as flagval, the maximum cluster vertex
weight pwgtmax, the minimum edge density densmin, and the bipartition
imbalance ratio bbalval. From this point, the strategy structure can only be
used as a mapping strategy, to be used by a mapping function such as SCOTCH_
graphMap.

Recursive bipartitioning will be applied to the graph, every bipartition al-
lowing for an imbalance tolerance of bbalval. Recursion will stop if either
cluster size becomes smaller than pwgtmax, or cluster edge density becomes
higher than densmin, which represents the fraction of edges internal to the
cluster with respect to a complete graph. See Section 8.3.1 for a description
of the available flags.

Return values

SCOTCH_stratGraphClusterBuild returns 0 if the strategy string has
been successfully set, and 1 else.

8.16.3 SCOTCH_stratGraphMap

Synopsis

int SCOTCH_stratGraphMap (SCOTCH_Strat » straptr,

const char = string)
scotchfstratgraphmap (doubleprecision (x) stradat,
character (x) string,

integer ierr)

Description

152

The SCOTCH_stratGraphMap routine fills the strategy structure pointed to
by straptr with the graph mapping strategy string pointed to by string.
From this point, the strategy structure can only be used as a mapping strategy,
to be used by function SCOTCH_graphMap, for instance.

When using the C interface, the array of characters pointed to by string
must be null-terminated.
Return values

SCOTCH_stratGraphMap returns 0 if the strategy string has been success-
fully set, and 1 else.

8.16.4 SCOTCH_stratGraphMapBuild

Synopsis
int SCOTCH_stratGraphMapBuild (SCOTCH_Strat = straptr,
const SCOTCH.Num flagval,
const SCOTCH.Num partnbr,
const double balrat)
scotchfstratgraphmapbuild (doubleprecision (%) stradat,
integerxnum flagval,
integer*num partnbr,
doubleprecision balrat,
integer ierr)
Description

The SCOTCH_stratGraphMapBuild routine fills the strategy structure
pointed to by straptr with a default mapping strategy tuned according
to the preference flags passed as flagval and to the desired number of parts
partnbr and imbalance ratio balrat. From this point, the strategy struc-
ture can only be used as a mapping strategy, to be used by function SCOTCH_
graphMap, for instance. See Section 8.3.1 for a description of the available
flags.

Return values

SCOTCH_stratGraphMapBuild returns 0 if the strategy string has been
successfully set, and 1 else.

8.16.5 SCOTCH_stratGraphPartOvl

Synopsis

int SCOTCH_stratGraphPartOvl (SCOTCH_Strat = straptr,

const char = string)
scotchfstratgraphpartovl (doubleprecision (%) stradat,
character (x) string,

integer ierr)

153

Description

The SCOTCH_stratGraphPartOvl routine fills the strategy structure
pointed to by straptr with the graph partitioning with overlap strategy
string pointed to by string. From this point, the strategy structure can
only be used as a partitioning with overlap strategy, to be used by function
SCOTCH_graphPartOvl only.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH_stratGraphPartOvl returns 0 if the strategy string has been suc-

cessfully set, and 1 else.

8.16.6 SCOTCH_stratGraphPartOvl1Build

Synopsis

int SCOTCH_stratGraphPartOvlBuild (SCOTCH_Strat =
const SCOTCH_Num
const SCOTCH_Num
const double

scotchfstratgraphpartovlbuild (doubleprecision (%)
integerxnum
integerxnum
doubleprecision
integer

Description

straptr,
flagval,
partnbr,
balrat)

stradat,
flagval,
partnbr,
balrat,
ierr)

The SCOTCH_stratGraphPartOv1Build routine fills the strategy struc-
ture pointed to by straptr with a default partitioning with overlap strategy
tuned according to the preference flags passed as f1lagval and to the desired
number of parts partnbr and imbalance ratio balrat. From this point, the
strategy structure can only be used as a partitioning with overlap strategy,
to be used by function SCOTCH_graphPartOvl only. See Section 8.3.1 for a
description of the available flags.

Return values

SCOTCH_stratGraphPartOv1Build returns 0 if the strategy string has
been successfully set, and 1 else.

8.16.7 SCOTCH_stratGraphOrder

Synopsis

int SCOTCH_stratGraphOrder (SCOTCH_Strat % straptr,
const char « string)

154

scotchfstratgraphorder (doubleprecision (x) stradat,
character (%) string,
integer ierr)

Description

The SCOTCH_stratGraphOrder routine fills the strategy structure pointed
to by straptr with the graph ordering strategy string pointed to by string.
From this point, the strategy structure can only be used as a graph ordering
strategy, to be used by function SCOTCH_graphOrder, for instance.

When using the C interface, the array of characters pointed to by string
must be null-terminated.

Return values

SCOTCH_stratGraphOrder returns 0 if the strategy string has been suc-
cessfully set, and 1 else.

8.16.8 SCOTCH_stratGraphOrderBuild

Synopsis

int SCOTCH_stratGraphOrderBuild (SCOTCH._Strat = straptr,
const SCOTCH.Num flagval,
const SCOTCH_Num levlnbr,
const double balrat)
scotchfstratgraphorderbuild (doubleprecision (*x) stradat,
integerxnum flagval,
integer*num levlnbr,
doubleprecision balrat,
integer ierr)

Description

The SCOTCH_stratGraphOrderBuild routine fills the strategy structure
pointed to by straptr with a default sequential ordering strategy tuned
according to the preference flags passed as f1lagval and to the desired nested
dissection imbalance ratio balrat. From this point, the strategy structure
can only be used as an ordering strategy, to be used by function SCOTCH_
graphOrder, for instance.

See Section 8.3.1 for a description of the available flags. When any of
the SCOTCH_STRATLEVELMIN or SCOTCH_STRATLEVELMAX flags is set, the
levlnbr parameter is taken into account.

Return values

SCOTCH_stratGraphOrderBuild returns 0 if the strategy string has been
successfully set, and 1 else.

155

8.16.9 SCOTCH_stratMeshOrder

Synopsis

int SCOTCH_stratMeshOrder (SCOTCH_Strat * straptr,

const char = string)
scotchfstratmeshorder (doubleprecision (x) stradat,
character (x) string,

integer ierr)

Description

The SCOTCH_stratMeshOrder routine fills the strategy structure pointed
to by straptr with the mesh ordering strategy string pointed to by string.
From this point, strategy strat can only be used as a mesh ordering strategy,
to be used by function SCOTCH_.meshOrder, for instance.

When using the C interface, the array of characters pointed to by string
must be null-terminated.
Return values

SCOTCH_stratMeshOrder returns 0 if the strategy string has been success-
fully set, and 1 else.

8.16.10 SCOTCH_stratMeshOrderBuild

Synopsis
int SCOTCH_stratMeshOrderBuild (SCOTCH_Strat = straptr,
const SCOTCH.Num flagval,
const double balrat)
scotchfstratmeshorderbuild (doubleprecision (=) stradat,
integer*num flagval,
doubleprecision balrat,
integer ierr)
Description

The SCOTCH_stratMeshOrderBuild routine fills the strategy structure
pointed to by straptr with a default ordering strategy tuned according
to the preference flags passed as flagval and to the desired nested dissec-
tion imbalance ratio balrat. From this point, the strategy structure can
only be used as an ordering strategy, to be used by function SCOTCH_mesh
Order, for instance. See Section 8.3.1 for a description of the available flags.

Return values

SCOTCH_stratMesdOrderBuild returns 0 if the strategy string has been
successfully set, and 1 else.

156

8.17 Geometry handling routines

Since the SCOTCH project is based on algorithms that rely on topology data only,
geometry data do not play an important role in the LIBSCOTCH library. They are
only relevant to programs that display graphs, such as the gout program. However,
since all routines that are used by the programs of the SCOTCH distributions have
an interface in the LIBSCOTCH library, there exist geometry handling routines in it,
which manipulate SCOTCH_Geom structures.

Apart from the routines that create, destroy or access SCOTCH_Geom structures,
all of the routines in this section are input/output routines, which read or write
both SCOTCH_Graph and SCOTCH_Geom structures. We have chosen to define the
interface of the geometry-handling routines such that they also handle graph or
mesh topology because some external file formats mix these data, and that we
wanted our routines to be able to read their data on the fly from streams that can
only be read once, such as communication pipes. Having both aspects taken into
account in a single call makes the writing of file conversion tools, such as gcv and
mcv, very easy. When the file format from which to read or into which to write
mixes both sorts of data, the geometry file pointer can be set to NULL, as it will
not be used.

8.17.1 SCOTCH_geomAlloc

Synopsis

SCOTCH_Geom % SCOTCH_.geomAlloc (void)

Description

The SCOTCH_geomAlloc function allocates a memory area of a size sufficient
to store a SCOTCH_Geom structure. It is the user’s responsibility to free this
memory when it is no longer needed, using the SCOTCH_memFree routine.
The allocated space must be initialized before use, by means of the SCOTCH_
geomInit routine.

Return values

SCOTCH_geomAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.17.2 SCOTCH_geomData

Synopsis

void SCOTCH._geomData (const SCOTCH_-Geom * geomptr,

SCOTCH_Num =* dimnptr,
double *=* geomtab)
scotchfgeomdata (doubleprecision (%) geomdat,
doubleprecision (=) indxtab,
integer*num dimnnbr,
integerx*idz geomidx)

157

Description

The SCOTCH_geomData routine is a multiple accessor to the contents of
SCOTCH_Geom structures.

dimnptr is the pointer to a location that will hold the number of dimensions
of the graph vertex or mesh node vertex coordinates, and will therefore be
equal to 1, 2 or 3. geomtab is the pointer to a location that will hold the
reference to the geometry coordinates, as defined in section 8.2.4.

Any of these pointers can be set to NULL on input if the corresponding infor-
mation is not needed. Else, the reference to a dummy area can be provided,
where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to al-
low users to access the coordinate array. The scotchfgeomdata routine
is passed an integer array, the first element of which is used as a base ad-
dress from which all other array indices are computed. Therefore, instead of
returning a reference, the routine returns an integer, which represents the
starting index of the coordinate array with respect to the base input ar-
ray. For instance, if some base array myarray (1) is passed as parameter
indxtab, then the first cell of array geomtab will be accessible as myarray
(geomidx) . In order for this feature to behave properly, the indxtab array
must be double-precision-aligned with the geometry array. This is automat-
ically enforced on most systems, but some care should be taken on systems
that allow one to access data that is not double-aligned. On such systems,
declaring the array after a dummy doubleprecision array can coerce the
compiler into enforcing the proper alignment. Also, on 32_64 architectures,
such indices can be larger than the size of a regular INTEGER. This is why
the indices to be returned are defined by means of a specific integer type. See
Section 8.1.5 for more information on this issue.

8.17.3 SCOTCH_geomExit

Synopsis

void SCOTCH_geomExit (SCOTCH_Geom % geomptr)

scotchfgeomexit (doubleprecision (%) geomdat)

Description

The SCOTCH_geomExit function frees the contents of a SCOTCH_Geom struc-
ture previously initialized by SCOTCH_geomInit. All subsequent calls to
SCOTCH_xGeom~* routines other than SCOTCH_geomInit, using this struc-
ture as parameter, may yield unpredictable results.

8.17.4 SCOTCH_geomInit

Synopsis

158

int SCOTCH_geomInit (SCOTCH_Geom * geomptr)

scotchfgeominit (doubleprecision (%) geomdat,
integer ierr)

Description

The SCOTCH_geomInit function initializes a SCOTCH_Geom structure so as
to make it suitable for future operations. It should be the first function to
be called upon a SCOTCH_Geom structure. When the geometrical data is no
longer of use, call function SCOTCH_geomExit to free its internal structures.

Return values

SCOTCH_geomInit returns 0 if the geometrical structure has been success-
fully initialized, and 1 else.

8.17.5 SCOTCH_geomSizeof

Synopsis

int SCOTCH._geomSizeof (void)

scotchfgeomsizeof (integer size)

Description

The SCOTCH_geomSizeof routine returns the size, in bytes, of a SCOTCH_
Geomn structure. This information is useful to export the interface of the LIB-

SCOTCH to interpreted languages, without access to the “scotch.h” include
file.

8.17.6 SCOTCH_graphGeomLoadChac

Synopsis

int SCOTCH_graphGeomLoadChac (SCOTCH_-Graph » grafptr,
SCOTCH_Geom «* geomptr,

FILE » grafstream,

FILE = geomstream,

const char = string)

scotchfgraphgeomloadchac (doubleprecision (%) grafdat,

doubleprecision (x) geomdat,
integer graffildes,
integer geomfildes,
character (x) string)

Description

159

The SCOTCH_graphGeomLoadChac routine fills the SCOTCH_Graph struc-
ture pointed to by grafptr with the source graph description available from
stream grafstream in the CHACO graph format [26]. Since this graph for-
mat does not handle geometry data, the geomptr and geomstream fields
are not used, as well as the string field.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor graffildes associated with the logical
unit of the graph file.

Return values

SCOTCH_graphGeomLoadChac returns 0 if the graph structure has been
successfully allocated and filled with the data read, and 1 else.

8.17.7 SCOTCH_graphGeomLoadHabo

Synopsis

int SCOTCH_graphGeomLoadHabo (SCOTCH_Graph x grafptr,
SCOTCH_Geom = geomptr,

FILE = grafstream,
FILE = geomstream,
const char = string)

scotchfgraphgeomloadhabo (doubleprecision (x) grafdat,

doubleprecision (*) geomdat,
integer graffildes,
integer geomfildes,
character (%) string)

Description

The SCOTCH_graphGeomLoadHabo routine fills the SCOTCH_Graph struc-
ture pointed to by grafptr with the source graph description available
from stream grafstream in the Harwell-Boeing square assembled matrix
format [11]. Since this graph format does not handle geometry data, the
geomptr and geomstream fields are not used. Since multiple graph struc-
tures can be encoded sequentially within the same file, the string field con-
tains the string representation of an integer number that codes the rank of
the graph to read within the Harwell-Boeing file. It is equal to “0” in most
cases.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor graffildes associated with the logical
unit of the graph file.

Return values

SCOTCH_graphGeomLoadHabo returns 0 if the graph structure has been
successfully allocated and filled with the data read, and 1 else.

160

8.17.8 SCOTCH_graphGeomLoadScot

Synopsis

int SCOTCH_graphGeomLoadScot (SCOTCH_-Graph =
SCOTCH_Geom =
FILE ~«*
FILE «
const char =

scotchfgraphgeomloadscot (doubleprecision ()
doubleprecision ()
integer
integer
character (x)

Description

grafptr,
geomptr,
grafstream,
geomstream,
string)

grafdat,
geomdat,
graffildes,
geomfildes,
string)

The SCOTCH_graphGeomLoadScot routine fills the SCOTCH_Graph and
SCOTCH_Geom structures pointed to by grafptr and geomptr with the
source graph description and geometry data available from streams graf
stream and geomstream in the SCOTCH graph and geometry formats (see
sections 6.1 and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
bers of the Unix file descriptors graffildes and geomfildes associated

with the logical units of the graph and geometry files.

Return values

SCOTCH_graphGeomLoadScot returns 0 if the graph topology and geometry
have been successfully allocated and filled with the data read, and 1 else.

8.17.9 SCOTCH_graphGeomSaveChac

Synopsis

int SCOTCH_graphGeomSaveChac (const SCOTCH_-Graph » grafptr,
const SCOTCH_Geom =* geomptr,

FILE *
FILE =*
const char «*

scotchfgraphgeomsavechac (doubleprecision (%)
doubleprecision ()
integer
integer
character (x)

Description

161

grafstream,
geomstream,
string)

grafdat,
geomdat,
graffildes,
geomfildes,
string)

The SCOTCH._graphGeomSaveChac routine saves the contents of the
SCOTCH_Graph structure pointed to by grafptr to stream grafstream,
in the CHACO graph format [26]. Since this graph format does not handle
geometry data, the geomptr and geomstream fields are not used, as well
as the string field.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor graffildes associated with the logical
unit of the graph file.

Return values

SCOTCH_graphGeomSaveChac returns 0 if the graph structure has been
successfully written to grafstream, and 1 else.

8.17.10 SCOTCH_graphGeomSaveScot

Synopsis

int SCOTCH_graphGeomSaveScot (const SCOTCH.Graph % grafptr,
const SCOTCH_Geom x* geomptr,

FILE = grafstream,
FILE = geomstream,
const char = string)
scotchfgraphgeomsavescot (doubleprecision (x) grafdat,
doubleprecision (*) geomdat,
integer graffildes,
integer geomfildes,
character (%) string)

Description

The SCOTCH_graphGeomSaveScot routine saves the contents of the
SCOTCH_Graph and SCOTCH_Geom structures pointed to by grafptr and
geomptr to streams grafstream and geomstream, in the SCOTCH graph
and geometry formats (see sections 6.1 and 6.3, respectively). The string
field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
bers of the Unix file descriptors graffildes and geomfildes associated
with the logical units of the graph and geometry files.

Return values

SCOTCH_graphGeomSaveScot returns 0 if the graph topology and geometry
have been successfully written to grafstream and geomstream, and 1 else.

8.17.11 SCOTCH._meshGeomLoadHabo

Synopsis

162

int SCOTCH.meshGeomLoadHabo (SCOTCH.Mesh * meshptr,
SCOTCH_Geom * geomptr,
FILE = meshstream,
FILE = geomstream,
const char x* string)

scotchfmeshgeomloadhabo (doubleprecision (%) meshdat,
doubleprecision (x*) geomdat,
integer meshfildes,
integer geomfildes,
character (%) string)
Description

The SCOTCH.meshGeomLoadHabo routine fills the SCOTCH Mesh structure
pointed to by meshptr with the source mesh description available from
stream meshstream in the Harwell-Boeing square elemental matrix for-
mat [11]. Since this mesh format does not handle geometry data, the geomptr
and geomstream fields are not used. Since multiple mesh structures can be
encoded sequentially within the same file, the st ring field contains the string
representation of an integer number that codes the rank of the mesh to read
within the Harwell-Boeing file. It is equal to “0” in most cases.

Fortran users must use the PXFFILENO or FNUM functions to obtain the
number of the Unix file descriptor meshfildes associated with the logical
unit of the mesh file.

Return values

SCOTCH_.meshGeomLoadHabo returns 0 if the mesh structure has been suc-
cessfully allocated and filled with the data read, and 1 else.

8.17.12 SCOTCH._.meshGeomLoadScot

Synopsis

int SCOTCH.meshGeomLoadScot (SCOTCH.Mesh » meshptr,
SCOTCH_Geom * geomptr,
FILE = meshstream,
FILE = geomstream,
const char = string)

scotchfmeshgeomloadscot (doubleprecision (x) meshdat,
doubleprecision (x) geomdat,
integer meshfildes,
integer geomfildes,
character (x) string)
Description

The SCOTCH.meshGeomLoadScot routine fills the SCOTCH Mesh and
SCOTCH_Geom structures pointed to by meshptr and geomptr with the

163

source mesh description and node geometry data available from streams mesh
stream and geomstream in the SCOTCH mesh and geometry formats (see
sections 6.2 and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
bers of the Unix file descriptors meshfildes and geomfildes associated
with the logical units of the mesh and geometry files.

Return values
SCOTCH-meshGeomLoadScot returns 0 if the mesh topology and node ge-
ometry have been successfully allocated and filled with the data read, and 1
else.

8.17.13 SCOTCH._meshGeomSaveScot

Synopsis

int SCOTCH.meshGeomSaveScot (const SCOTCH_Mesh % meshptr,
const SCOTCH_.Geom x geomptr,

FILE = meshstream,

FILE « geomstream,

const char = string)

scotchfmeshgeomsavescot (doubleprecision (%) meshdat,

doubleprecision (x) geomdat,
integer meshfildes,
integer geomfildes,
character (x) string)

Description

The SCOTCH_meshGeomSaveScot routine saves the contents of the SCOTCH_
Mesh and SCOTCH_Geom structures pointed to by meshptr and geomptr to
streams meshstream and geomstream, in the SCOTCH mesh and geometry
formats (see sections 6.2 and 6.3, respectively). The string field is not used.

Fortran users must use the PXFFILENO or FNUM functions to obtain the num-
bers of the Unix file descriptors meshfildes and geomfildes associated
with the logical units of the mesh and geometry files.

Return values

SCOTCH.meshGeomSaveScot returns 0 if the mesh topology and node ge-
ometry have been successfully written to meshstream and geomstream,
and 1 else.

8.18 Other data structure handling routines
8.18.1 SCOTCH.mapAlloc
Synopsis

SCOTCH Mapping * SCOTCHmapAlloc (void)

164

Description

The SCOTCH_-mapAlloc function allocates a memory area of a size sufficient
to store a SCOTCH Mapping structure. It is the user’s responsibility to free
this memory when it is no longer needed, using the SCOTCH_memF ree routine.

Return values

SCOTCH.mapAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.
8.18.2 SCOTCH.mapSizeof

Synopsis

int SCOTCH.mapSizeof (void)

scotchfmapsizeof (integer size)

Description

The SCOTCH.mapSizeof routine returns the size, in bytes, of a SCOTCH_
Mapping structure. This information is useful to export the interface of
the LIBSCOTCH to interpreted languages, without access to the “scotch.h”
include file.

8.18.3 SCOTCH_orderAlloc

Synopsis

SCOTCH Ordering * SCOTCH.orderAlloc (void)

Description

The SCOTCH_orderAlloc function allocates a memory area of a size suffi-
cient to store a SCOTCH_Ordering structure. It is the user’s responsibility
to free this memory when it is no longer needed, using the SCOTCH_mem
Free routine.

Return values

SCOTCH_orderAlloc returns the pointer to the memory area if it has been
successfully allocated, and NULL else.

8.18.4 SCOTCH_orderSizeof

Synopsis

int SCOTCH_.orderSizeof (void)

scotchfordersizeof (integer size)

165

Description

The SCOTCH-orderSizeof routine returns the size, in bytes, of a SCOTCH_
Ordering structure. This information is useful to export the interface of
the LIBSCOTCH to interpreted languages, without access to the “scotch.h”
include file.

8.19 Error handling routines

The handling of errors that occur within library routines is often difficult, because
library routines should be able to issue error messages that help the application
programmer to find the error, while being compatible with the way the application
handles its own errors.

To match these two requirements, all the error and warning messages pro-
duced by the routines of the LIBSCOTCH library are issued using the user-
definable variable-length argument routines SCOTCH_errorPrint and SCOTCH_
errorPrintW. Thus, one can redirect these error messages to his own error han-
dling routines, and can choose if he wants his program to terminate on error or to
resume execution after the erroneous function has returned.

In order to free the user from the burden of writing a basic error handler from
scratch, the 1ibscotcherr. a library provides error routines that print error mes-
sages on the standard error stream stderr and return control to the applica-
tion. Application programmers who want to take advantage of them have to add
—1lscotcherr to the list of arguments of the linker, after the —1scotch argument.

8.19.1 SCOTCH_errorPrint

Synopsis

void SCOTCH_errorPrint (const char = errstr, ...)

Description

The SCOTCH_errorPrint function is designed to output a variable-length
argument error string to some stream.

8.19.2 SCOTCH_errorPrintW

Synopsis

void SCOTCH_errorPrintW (const char * errstr, ...)

Description

The SCOTCH_errorPrintW function is designed to output a variable-length
argument warning string to some stream.

166

8.19.3 SCOTCH_errorProg

Synopsis

void SCOTCH_errorProg (const char % progstr)

Description

The SCOTCH_errorProg function is designed to be called at the beginning
of a program or of a portion of code to identify the place where subsequent
errors take place. This routine is not reentrant, as it is only a minor help
function. It is defined in libscotcherr.a and is used by the standalone
programs of the SCOTCH distribution.

8.20 Random generator handling

In order not to be influenced by the concurrent execution of third-party software
and/or library routines, the LIBSCOTCH library embeds its own pseudo-random
number generator. This generator is used by default by all LIBSCOTCH routines.

When ScoOTCH has been compiled with any of the flags COMMON_RANDOM_
FIXED_SEED or SCOTCH.DETERMINISTIC set, this random number generator is
initialized with a prescribed, default seed. In this case, any two runs of the same
sequence of LIBSCOTCH routines will yield the same result. The first flag will be
sufficient when SCOTCH is run on a single thread, while he second one is necessary
when SCOTCH is run on several threads, because multi-threaded versions of the
LIBSCOTCH routines may rely by default on non-deterministic algorithms that are
not only sensitive to the pseudo-random sequence but also to system artifacts (see
Section 8.1.6).

In certain cases, it may be interesting, when running the same sequential
SCOTCH routine on different processors, to explore different solution spaces. The
SCOTCH_randomP roc routine allows the user to set an instance (processor) number
that will be used to parametrize the random seed, hence providing different pseudo-
random sequences for each instance number. However, when any of the two afore-
mentioned compilation flags have been set, these sequence will still be deterministic:
two runs of a sequence of LIBSCOTCH routines taking place after a call to SCOTCH_
randomReset will always yield the same results.

In the case where the user wants to run concurrently LIBSCOTCH routines on
different threads or sets of threads, determinism cannot be ensured using the global
pseudo-random generator, because of the non-determinism in the way concurrent
routines retrieve the values of the pseudo-random sequence. Moreover, because the
global pseudo-number generator is not protected against race conditions, calling it
concurrently from several threads may yield unpredictable results. Hence, in this
case, users should use a different SCOTCH_Context for each master thread, that
will contain its own pseudo-random generator (see Section 8.21).

8.20.1 SCOTCH_randomProc

Synopsis

167

void SCOTCH.randomProc (SCOTCH_.Num procnum)

scotchfrandomproc (integerxnum procnum)

Description

The SCOTCH_randomProc routine sets to procnum the internal instance of
the LIBSCOTCH library. This instance number influences the random seed
that is used to initialize pseudo-random number generators.

In order for this instance number to be taken into account as a
seed for the global pseudo-random generator of the LIBSCOTCH library,
SCOTCH_randomProc must be either called before any other library routine,
or followed by a call to SCOTCH_randomReset. Subsequent calls to SCOTCH-
randomReset will make use of this number as well.

The current value of procnum is copied along with the random seed, when the
global pseudo-random number generator is cloned into a context by routine
SCOTCH_contextRandomClone.

8.20.2 SCOTCH_randomReset

Synopsis

void SCOTCH_randomReset (void)

scotchfrandomreset ()

Description

The SCOTCH._randomReset routine resets the seed of the global pseudo-
random generator used by default by the routines of the LIBSCOTCH library.

Two consecutive calls to the same LIBSCOTCH partitioning or ordering rou-
tines within the same program, separated by a call to SCOTCH_random
Reset, will always yield the same results. Moreover, when SCOTCH has been
compiled with any of the flags COMMON_RANDOM_FIXED_SEED or SCOTCH-
DETERMINISTIC set, any two runs of the same program at different times
will yield the same result.

8.20.3 SCOTCH_randomSeed

Synopsis

void SCOTCH_randomSeed (SCOTCH_Num seedval)

scotchfrandomseed (integerxnum seedval)

Description

The SCOTCH_randomSeed routine sets to seedval the seed of the global
pseudo-random generator used by default by some SCOTCH algorithms. All

168

subsequent calls to SCOTCH_randomReset will use this value to reset the
pseudo-random generator. In he case when no random seed is defined by
the user, then depending whether SCOTCH has been compiled with any of
the ﬂags COMMON_RANDOM_FIXED_SEED or SCOTCH.DETERMINISTIC set or
not, either the same pseudo-random seed will be always used, or a situation-
dependent seed will be used, respectively.

8.20.4 SCOTCH_randomVal

Synopsis

SCOTCH_Num SCOTCH_randomVal (SCOTCH_Num randmax)

scotchfrandomval (integerxnum randmax,
integerxnum randval)

Description

The SCOTCH._randomVal routine returns a positive integer random value
from the global pseudo-random generator, in the range [0; randmax]|.

8.21 Context handling routines

By default, SCOTCH uses a global pseudo-random number generator and takes ad-
vantage of as many threads as it can discover on the system, using default, compile-
time settings. This behavior makes sense when only one call to the LIBSCOTCH
is made at a time. However, cases may arise where the user wants to perform
different tasks on the same graph or mesh at the same time, by calling concur-
rently LIBSCOTCH routines from different sets of threads. This is when SCOTCH_
Context objects are necessary.

A SCOTCH_Context is a data structure that encapsulates an environment ex-
ecution for the routines of the LIBSCOTCH library. Essentially, it contains the set
of threads that will be used for performing computations, a private, independent
pseudo-random number generator, and a set of flags and option values defined at
compile-time.

In order to associate a context with a task to be performed, one has to bind the
context to a SCOTCH object (that is, a graph, a mesh or a distributed graph), so as
to create a container of the same type as the object (that is, a graph, mesh or dis-
tributed graph, respectively). This dummy object, when passed to the LIBSCOTCH
routines, will allow them to retrieve the context information as well as a reference
to the original object (see Figure 23). Several contexts can be bound to the same
SCOTCH object, allowing different LIBSCOTCH routines to work concurrently on it.
If the same context is shared by several containers, these should never be used con-
currently. The original object and the context of a container must never be freed
before it.

8.21.1 SCOTCH_ contextInit

Synopsis

169

Context container

SCOTCH_Gr aph

Graph Context| Threads

vertnbr
edgenbr
verttab
etc.

Random
generator

SCOTCH_Cont ext
SCOTCH_Gr aph

Figure 23: Dependencies between a context container and its underlying object and
context. The context container is always seen as a SCOTCH object of the same type
as the original object, for instance a SCOTCH_Graph in this example.

int SCOTCH_contextInit (SCOTCH_-Context x contptr)
scotchfcontextinit (doubleprecision (%) contdat,

integer ierr)

Description

The SCOTCH_contextInit function initializes a SCOTCH_Context struc-
ture so as to make it suitable for future operations. It should be the first
function to be called upon a SCOTCH_Context structure. In the case when
the context will be used to capture a pool of existing threads, it must be called
only by the master thread.

When the context data is no longer of use, call function SCOTCH.
contextExit to free its internal structures. A context must not be freed
before the context containers that are created from it.

Return values

SCOTCH_contextInit returns O if the context structure has been success-
fully initialized, and 1 else.

8.21.2 SCOTCH contextExit

Synopsis

void SCOTCH_contextExit (SCOTCH_Context = contptr)

scotchfcontextexit (doubleprecision (*x) contdat)

Description

The SCOTCH_contextExit function frees the contents of a SCOTCH-
Context structure previously initialized by SCOTCH_contextInit. In par-
ticular, it destroys the pseudo-random generator embedded in the context, and
disposes of its threads. If the threads were created within the context, they are
destroyed; if they were captured from an outside pool of threads (see SCOTCH_
contextImportl), they are released.

170

8.21.3 SCOTCH_contextOptionGetNum

Synopsis
int SCOTCH_contextOptionGetNum (SCOTCH Context % contptr,
int optinum)
SCOTCH_Num =* optivalptr)
scotchfcontextoptiongetnum (doubleprecision (%) contdat,
integer optinum,
integer*num optival,
integer ierr)

Description

The SCOTCH_contextOptionGetNum function retrieves, in the SCOTCH_
Num value optival pointed to by optivalptr, the current integer context
value of index opt inum. Integer option index values are of the form SCOTCH_
OPTIONNUMx, and range from 0 to (SCOTCH_.OPTIONNUMNBR - 1), inclusive.
This allows users to capture in an array of SCOTCH_Nums the values of relevant

integer execution options, for the sake of reproducibility.

Return values

SCOTCH_contextOptionGetNum returns 0 if the value has been properly

retrieved, and 1 in case of an invalid optinum index.

8.21.4 SCOTCH_contextOptionSetNum

Synopsis

int SCOTCH_contextOptionSetNum (SCOTCH_Context % contptr,
int optinum)
SCOTCH_Num optival)
scotchfcontextoptionsetnum (doubleprecision (%) contdat,
integer optinum,
integerxnum optival,

integer ierr)

Description

The SCOTCH.contextOptionSetNum function sets the integer context

value of index opt inum with the value optival.

Available integer option values are the following;:

— SCOTCH_OPTIONNUMDETERMINISTIC: a value of 0 induces a non-

deterministic behavior (i.e., different runs may yield different results),
while a value of 1 induces a deterministic behavior across multiple runs,
for any number of threads (yet, for the same number of MPI processes,
as data distribution varies across numbers of MPI processes). The ini-
tial value of this option at run time is defined by the compilation option

171

SCOTCH.DETERMINISTIC (see the SCOTCH installation instructions).
A deterministic behavior implies the use of a fixed random seed (see
below).

— SCOTCH_OPTIONNUMFIXEDSEED: a value of 0 induces that a distinct
random seed be selected for each launch of a program using the LIB-
ScoOTCH library, while a value of 1 induces that the same, fixed ran-
dom seed be used at each launch. The initial value of this option at
run time is defined by the compilation option COMMON_RANDOM_FIXED_
SEED (see the SCOTCH installation instructions).
Return values

SCOTCH_contextOptionSetNum returns 0 if the value has been properly
set, and 1 on error.

8.21.5 SCOTCH_contextRandomClone

Synopsis

int SCOTCH_contextRandomClone (SCOTCH_Context x contptr)
scotchfcontextrandomclone (doubleprecision () contdat,

integer ierr)

Description

The SCOTCH_contextRandomClone routine clones into the given context
the current state of the global pseudo-random generator. It allows the user
to run concurrently several routines of the LIBSCOTCH library in a repro-
ducibile way, since the cloned generators within two different contexts can be
parametrized independently.

Return values

SCOTCH_contextRandomClone returns O if the pseudo-random generator
has been successfully cloned, and 1 else.
8.21.6 SCOTCH_contextRandomReset

Synopsis

void SCOTCH_contextRandomReset (SCOTCH_Context * contptr)

scotchfcontextrandomreset (doubleprecision (%) contdat)

Description

The SCOTCH_contextRandomReset routine resets the seed of the pseudo-
random generator used by the given context. This generator may either be
the default global pseudo-random generator of the LIBSCOTCH library (the
routine then performs like SCOTCH randomReset) or a private generator
created by means of the SCOTCH_contextRandomClone function.

172

Please see the manual page of SCOTCH_randomReset, page 168, for more
information on the operations of the pseudo-random generator resetting rou-
tines.

8.21.7 SCOTCH_contextRandomSeed

Synopsis

void SCOTCH_contextRandomSeed (SCOTCH_Context = contptr,

SCOTCH_Num seedval)
scotchfcontextrandomseed (doubleprecision (%) contdat,
integer*num seedval)

Description

The SCOTCH_contextRandomSeed routine sets to seedval the seed of the
pseudo-random generator used by the given context. This generator may ei-
ther be the default global pseudo-random generator of the LIBSCOTCH library
(the routine then performs like SCOTCH_randomSeed) or a private generator
created by means of the SCOTCH_contextRandomClone function.

Please see the manual page of SCOTCH_randomSeed, page 168, for more
information on the operations of the pseudo-random generator seed setting
routines.

8.21.8 SCOTCH_contextSizeof

Synopsis

int SCOTCH_contextSizeof (void)

scotchfcontextsizeof (integer size)

Description

The SCOTCH_contextSizeof routine returns the size, in bytes, of a
SCOTCH_Context structure. This information is useful to export the in-
terface of the LIBSCOTCH to interpreted languages, without access to the
“scotch.h” include file.

8.21.9 SCOTCH_contextThreadImportl

Synopsis

int SCOTCH_contextThreadImportl (SCOTCH_Context % contptr,

int thrdnbr)
scotchfcontextthreadimportl (doubleprecision () contdat,
integer thrdnbr,

integer ierr)

173

o oA W N e

4

10

11
12

13

14

15
16
17

18
19

20
21
22

23
24
25

Listing 1: Sample code for capturing a pool of threads and launching multi-threaded
computations using this pool. All LIBSCOTCH routines which are passed the context
graph (instead of the regular graph) will make use of the captured threads.

SCOTCH_Context contdat; /* Context data */
SCOTCH_Graph graftab[2]; /* A regular graph and a container graph */

if (thrdnum == 0) {

SCOTCH_graphInit (&graftab[0]); /# Initialize regular graph x/
SCOTCH_graphLoad (&graftab[0], ...); /* User places data in graph

structure */

SCOTCH_contextInit (&contdat); /* Initialize context =*/
SCOTCH_contextRandomClone (&contdat); /# Set private random generator #*/
SCOTCH_contextThreadImportl (&contdat, thrdnbr); /+ Give number of
threads */
}
user_thread_barrier (); /# User makes sure there is synchronization
across threads here */
SCOTCH_contextThreadImport2 (&contdat, thrdnum); /# Every thread gives
its rank */
/+ From here, all slave threads are blocked until context is
destroyed */

if (thrdnum == 0) {
SCOTCH_graphInit (&graftab[l]); /# Initialize container graph =/
SCOTCH_contextBindGraph (&contdat, &graftab[0], &graftabll]); /+ Bind

context */

SCOTCH_graphOrder (&graftab[l], ...); /# Use container graph for multi-
threading */

SCOTCH_graphExit (&graftab[l]); /+ Destroy container #*/
SCOTCH_contextExit (&contdat); /* Destroy context; slave threads are

released */

SCOTCH_graphExit (&graftab[0]); /# Destroy regular graph x/

Description

The SCOTCH-contextThreadImportl function initiates the capture, into
the given context, of an existing pool of threads. It must be called only by
the master thread, which provides thrdnbr, the overall number of threads
to be included in the context (including the master thread).

See Listing 1, page 174 for a sample of multi-threaded code using SCOTCH_
contextThreadImportl and SCOTCH_contextThreadImport2 to cap-
ture a pool of existing threads and use it for LIBSCOTCH computations.

Return values

SCOTCH_contextThreadImportl returns 0 if the context thread structure
has been successfully initialized, and 1 else.

174

8.21.10 SCOTCH_contextThreadImport2

Synopsis

int SCOTCH_contextThreadImport2 (SCOTCH_-Context % contptr,

int thrdnum)
scotchfcontextthreadimport?2 (doubleprecision () contdat,
integer thrdnum,

integer ierr)

Description

The SCOTCH_contextThreadImport2 function finalizes the capture, into
the given context, of an existing pool of threads. It must be called by all
threads, including the master thread, after the latter has returned from
SCOTCH_contextThreadImportl; hence, some synchronization (e.g., a
barrier) must be implemented between the two routines, for all threads to
wait until the master thread has completed setting-up the context structure.

Each thread provides thrdnum, its rank within the thread pool; it must be 0
for the master thread. On success, only the master thread returns immediatly
from the routine; all slave threads are captured within the context and put
to sleep. The master thread can then bind the context to a SCOTCH object
(see SCOTCH_contextBindGraph and SCOTCH_contextBindMesh), and
call LIBSCOTCH routines using the created context container.

When the context is no longer of use, it can be destroyed by the master thread
by calling SCOTCH_contextExit. All slave threads will then return from
their call to SCOTCH_contextThreadImport?2.

See Listing 1, page 174 for an example of code using this routine.

Return values

SCOTCH_contextThreadImport2 returns 1 to all threads in case of an
error. Else, it returns 0 to the master thread immediately, and 0 to the slave
threads once the capturing context has been destroyed by the master thread.

8.21.11 SCOTCH_contextThreadSpawn

Synopsis

int SCOTCH_contextThreadSpawn (SCOTCH_Context = contptr,

int thrdnbr,
int * coretab)
scotchfcontextthreadspawn (doubleprecision () contdat,
integer thrdnbr,
integer coretab,
integer ierr)

Description

175

a A W N e

10
11

12
13

14
15
16
17
18

Listing 2: Sample code for running multi-threaded computations using a dedicated
pool of threads. This code is run by the main thread. All LIBSCOTCH routines
which are passed the context graph (instead of the regular graph) will make use of
the dedicated pool. If LIBSCOTCH routines are called on the regular graph, a local
pool is created and destroyed for every function call.

SCOTCH_Context contdat; /* Context data */
SCOTCH_Graph graftab[2]; /* A regular graph and a container graph */

SCOTCH_graphInit (&graftab[0]); /+ Initialize regular graph x/
SCOTCH_graphLoad (&graftab[0], ...); /* User places data in graph
structure */

SCOTCH_contextInit (&contdat); /* Initialize context x*/
SCOTCH_contextThreadSpawn (&contdat, thrdnbr, NULL); /% Set number of
threads */

SCOTCH_graphInit (&graftab[l]); /* Initialize container graph =/
SCOTCH_contextBindGraph (&contdat, &graftab[0], &graftab[l]); /# Bind

context #*/

SCOTCH_graphOrder (&graftab[l], ...); /# Use container graph for multi-
threading =/

SCOTCH_graphExit (&graftab[l]); /+ Destroy container #*/
SCOTCH_contextExit (&contdat); /#* Destroy context #*/

SCOTCH_graphExit (&graftab[0]); /* Destroy regular graph x/

The SCOTCH_contextThreadSpawn function populates the given context
contptr with (thrdnbr — 1) slave threads which, in addition to the master,
calling thread, will enable thrdnbr threads to participate in the computation
of the LIBSCOTCH routines called using this context.

When coretab is not equal to NULL or &thrdnbr, it represents an array
of thrdnbr integer values that represent the logical indices of the cores onto
which the threads will be bound. Valid core indices range from 0 to the
number of cores available on the platform, minus one. Core indices above this
threshold are subject to modulus reduction. A core index of —1 results in
the thread not being bound to a specific core (which may be detrimental to
memory locality if threads are not always executed on the same core). The
conversion from logical core numbers to physical core numbers depends on
the platform features selected at compile time, e.g., “~DCOMMON_PTHREAD_
AFFINITY.LINUX” (which binds theads to logical cores without accounting
for hardware locality) or “~DCOMMON_PTHREAD AFFINITY_HWLOC”. When
no affinity module is defined at compile time, threads are left unbound.

See Listing 2, page 176 for a sample of sequential code using SCOTCH_
contextThreadSpawn to create a thread pool of a prescribed number of
threads.

Return values

SCOTCH_contextThreadSpawn returns 0 if the context thread structure
has been successfully initialized, and 1 else.

176

8.21.12 SCOTCH_contextBindGraph

Synopsis

int SCOTCH_contextBindGraph (SCOTCH_Context *x contptr,

SCOTCH_Graph = orggrafptr,
SCOTCH_Graph =« cntgrafptr)
scotchfcontextbindgraph (doubleprecision (%) contdat,
doubleprecision (x) orggrafdat,
doubleprecision () cntgrafdat,
integer ierr)

Description

The SCOTCH_contextBindGraph function initializes a context container
object cntgraf, with a type compatible with a SCOTCH_Graph structure,
to make it reference both the given genuine SCOTCH_Graph structure org
graf and the SCOTCH_Context structure cont. The context container can
then be used by routines of the LIBSCOTCH library that expect a SCOTCH-
Graph, which will take advantage of all the features offered by the given
context.

When the context container is no longer of use, call function SCOTCH_graph
Exit to free its internal structures. The original graph and the context can
then also be freed by using the adequate routines.

Return values

SCOTCH_contextBindGraph returns 0 if the context container graph struc-
ture has been successfully initialized, and 1 else.

8.21.13 SCOTCH_contextBindMesh

Synopsis

int SCOTCH_contextBindMesh (SCOTCH_Context = contptr,

SCOTCH_Mesh = orgmeshptr,
SCOTCH_Mesh = cntmeshptr)
scotchfcontextBindMesh (doubleprecision (%) contdat,
doubleprecision (x) orgmeshdat,
doubleprecision () cntmeshdat,
integer ierr)

Description

The SCOTCH_contextBindMesh function initializes a context container ob-
ject cntmesh, with a type compatible with a SCOTCH Mesh structure, to
make it reference both the given genuine SCOTCH Mesh structure orgmesh
and the SCOTCH_Context structure cont. The context container can then

177

be used by routines of the LIBSCOTCH library that expect a SCOTCH Mesh,
which will take advantage of all the features offered by the given context.

When the context container is no longer of use, call function SCOTCH_graph
Exit to free its internal structures. The original graph and the context can
then also be freed by using the adequate routines.

Return values

SCOTCH_contextBindMesh returns 0 if the context container graph struc-
ture has been successfully initialized, and 1 else.

8.22 Memory management
8.22.1 SCOTCH._memCur

Synopsis

SCOTCH_Idx SCOTCH.memCur (void)

scotchfmemcur (integer*idr memcur)

Description

When ScoTcH is compiled with the COMMON_MEMORY_TRACE flag set, the
SCOTCH_.memCur routine returns the amount of memory, in bytes, that is
currently allocated by SCOTCH on the current processing element, either by
itself or on the behalf of the user. Else, the routine returns —1.

The returned figure does not account for the memory that has been allocated
by the user and made visible to SCOTCH by means of routines such as SCOTCH_
dgraphBuild calls. This memory is not under the control of SCOTCH, and
it is the user’s responsibility to free it after calling the relevant SCOTCH_x*
Exit routines.

Some third-party software used by SCOTCH, such as the strategy string parser,
may allocate some memory for internal use and never free it. Consequently,
there may be small discrepancies between memory occupation figures returned
by ScoTcCH and those returned by third-party tools. However, these discrep-
ancies should not exceed a few kilobytes.

While memory occupation is internally recorded in a variable of type intptr_
t, it is output as a SCOTCH_Idx for the sake of interface homogeneity, espe-
cially for Fortran. It is therefore the installer’s responsibility to make sure
that the support integer type of SCOTCH_Idx is large enough to not overflow.
See section 8.1.5 for more information.

8.22.2 SCOTCH_memFree

Synopsis

void SCOTCH.memFree (void * dataptr)

178

Description

The SCOTCH-memFree routine frees the memory space allocated by routines
such as SCOTCH_graphAlloc, SCOTCH.meshAlloc, or SCOTCH_strat
Alloc.

The standard free routine of the LIBC must not be used for this purpose.
Else, the allocated memory will not be considered as properly released by
memory accounting routines SCOTCH_memCur and SCOTCH_memMax, and seg-
mentation errors would happen when the COMMON_MEMORY_CHECK compile
flag is set.

On the opposite, if the user has allocated memory by himself according to
the size information provided by the SCOTCH_x*Sizeof routines, it is his
responsibility to free this memory using the corresponding memory freeing
routine of his environment.

8.22.3 SCOTCH_memMax

Synopsis

SCOTCH_Idx SCOTCH.memMax (void)

scotchfmemmax (integer*idr memcur)

Description

When SCOTCH is compiled with the COMMON_MEMORY_TRACE flag set, the
SCOTCH._memMax routine returns the maximum amount of memory, in bytes,
ever allocated by SCOTCH on the current processing element, either by itself
or on the behalf of the user. Else, the routine returns —1.

The returned figure does not account for the memory that has been allocated
by the user and made visible to SCOTCH by means of routines such as SCOTCH_
dgraphBuild calls. This memory is not under the control of SCOTCH, and
it is the user’s responsibility to free it after calling the relevant SCOTCH_=*
Exit routines.

Some third-party software used by SCOTCH, such as the strategy string parser,
may allocate some memory for internal use and never free it. Consequently,
there may be small discrepancies between memory occupation figures returned
by ScOTCH and those returned by third-party tools. However, these discrep-
ancies should not exceed a few kilobytes.

While memory occupation is internally recorded in a variable of type intptr_
t, it is output as a SCOTCH_Idx for the sake of interface homogeneity, espe-
cially for Fortran. It is therefore the installer’s responsibility to make sure
that the support integer type of SCOTCH_Idx is large enough to not overflow.
See section 8.1.5 for more information.

179

8.23 Miscellaneous routines
8.23.1 SCOTCH_numSizeof

Synopsis

int SCOTCH_numSizeof (void)

scotchfnumsizeof (integer size)

Description

The SCOTCH.numSizeof routine returns the size, in bytes, of a SCOTCH_
Num. This information is useful to export the interface of the LIBSCOTCH to
interpreted languages, without access to the “scotch.h” include file.

8.23.2 SCOTCH_version

Synopsis

int SCOTCH._version (int * versptr,
int x* relaptr,
int * patcptr)

scotchfversion (integer versval,
integer relaval,
integer patcval)

Description

The SCOTCH_version routine writes the version, release and patchlevel num-
bers of the SCOTCH library that is currently being used, to integer values
xversptr, rrelaptr and patcptr, respectively. This routine is mainly
useful for applications willing to record runtime information, such as the li-
brary against which they are dynamically linked.

8.24 MEIIS compatibility library

The MEDNS compatibility library provides stubs which redirect some calls to METIS
routines to the corresponding SCOTCH counterparts. In order to use this feature,
the only thing to do is to re-link the existing software with the 1ibscotchmetis
library, and eventually with the original MEIIS library if the software uses MEIIS
routines which do not need to have SCOTCH equivalents, such as graph transfor-
mation routines. In that latter case, the “~1scotchmetis” argument must be
placed before the “~1metis” one (and of course before the “~1scotch” one too),
so that routines that are redefined by SCOTCH are chosen instead of their MEIIS
counterpart. When no other MEIIS routines than the ones redefined by ScoTcH
are used, the “~1metis” argument can be omitted. See Section 10 for an example.

“

180

8.24.1 METIS_EdgeND

Synopsis

void METIS_EdgeND (const SCOTCH.Num * n,
const SCOTCH.Num *» xadj,
const SCOTCH.Num *» adjncy,
const SCOTCH.Num » numflag,
const SCOTCH.Num = options,

SCOTCH_Num = perm,
SCOTCH_Num =* iperm)
metis_edgend (integerxnum n,

integerxnum (x) xadij,
integerxnum (%) adjncy,
integerxnum numflag,
integerxnum (x) options,
integer*xnum (*) perm,
integer*num (x) iperm)

Description

The METIS_EdgeND function performs a nested dissection ordering of the
graph passed as arrays xadj and ad jncy, using the default SCOTCH ordering
strategy.

Conforming to the MEITIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by ScoTCH. The perm and iperm arrays have the opposite meaning
as in SCOTCH: the MEINIS perm array holds what is called “inverse permuta-
tion” in SCOTCH, while iperm holds what is called “direct permutation” in
SCOTCH.

While ScoTCH has also both node and edge separation capabilities, all of the
three MEIIS stubs METIS_EdgeND, METIS NodeND and METIS NodeWND
call the same SCOTCH routine, which uses the SCOTCH default ordering strat-
egy proved to be efficient in most cases.

8.24.2 METIS_MeshToDual

Synopsis

int METIS MeshToDual (const SCOTCH. Num * const ne,
const SCOTCH_Num = const nn,
const SCOTCH_Num =*x const eptr,
const SCOTCH.Num * const eind,
const SCOTCH_Num % const ncommon,
const SCOTCH-Num * const numflag,
SCOTCH_Num =*#* const xadj,
SCOTCH. Num =+ const adjncy)

181

metis meshtodual (integer*num ne,

integer*num nn,
integer*xnum (*) eptr,
integer*xnum (%) eind,
integerxnum ncommon,
integerxnum numflag,
integerxnum (*x*) xadj,
integerxnum (xx) adjncy)

Description

Given the eptr and eind arrays describing the element-to-node adjacency of
a mesh with xne elements and *nn nodes, the METIS MeshToDual function
computes the dual graph, i.e. the graph of elements, of this mesh. The
vertices of the dual graph represent the elements of the mesh, and there ex-
ists an edge between any two graph vertices if and only if there are at least
ncommon shared nodes between the two corresponding elements in the mesh.
The numflag parameter corresponds to the base value of the numbering: 0
for C, and 1 for Fortran.

On return, the xadj and adjncy arrays are allocated, by way of the
malloc () routine, and contain the adjacency list of the dual graph. It is the
user’s responsibility to free these arrays, using the free () routine, whenever
these arrays are no longer necessary. If the function fails, xadj is set to NULL.

8.24.3 METIS_NodeND

Synopsis

void METIS_NodeND (const SCOTCH.Num * n,
const SCOTCH.Num *» xadj,
const SCOTCH.Num *» adjncy,
const SCOTCH.Num = numflag,
const SCOTCH.-Num x options,

SCOTCH_Num =* perm,
SCOTCH-Num =* iperm)
metis_nodend (integer*num n,

integer*xnum (*) xadj,
integer*num (%) adjncy,
integerxnum numflag,
integerxnum (x) options,
integer*num (*) perm,
integer*num (*x) iperm)

Description

The METIS NodeND function performs a nested dissection ordering of the
graph passed as arrays xadj and ad jncy, using the default SCOTCH ordering
strategy.

182

Conforming to the METIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH. The perm and iperm arrays have the opposite meaning
as in SCOTCH: the MEIIS perm array holds what is called “inverse permuta-
tion” in SCOTCH, while iperm holds what is called “direct permutation” in
SCOTCH.

While SCOTCH has also both node and edge separation capabilities, all of the
three MEIS stubs METIS_EdgeND, METIS NodeND and METIS NodeWND
call the same SCOTCH routine, which uses the SCOTCH default ordering strat-
egy proved to be efficient in most cases.

8.24.4 METIS_NodeWND

Synopsis

void METIS_NodeWND (const SCOTCH_Num * n,
const SCOTCH.Num * xadj,
const SCOTCH.Num *» adjncy,
const SCOTCH.Num * vwgt,
const SCOTCH.Num = numflag,
const SCOTCH.Num *» options,

SCOTCH_Num = perm,
SCOTCH_Num =* iperm)
metis_nodwend (integer*num n,
integerxnum (x) xadij,
integerxnum (%) adjncy,
integerxnum (%) vwgt,
integer*xnum numflag,

integerxnum (%) options,
integer*num (%) perm,
integerxnum (%) iperm)

Description

The METIS NodeWND function performs a nested dissection ordering of the
graph passed as arrays xadj, adjncy and vwgt, using the default SCOTCH
ordering strategy.

Conforming to the METIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH. The perm and iperm arrays have the opposite meaning
as in SCOTCH: the MEIIS perm array holds what is called “inverse permuta-
tion” in SCOTCH, while iperm holds what is called “direct permutation” in
SCOTCH.

While ScoTcH has also both node and edge separation capabilities, all of the
three MEIIS stubs METIS_EdgeND, METIS NodeND and METIS NodeWND
call the same SCOTCH routine, which uses the SCOTCH default ordering strat-
egy proved to be efficient in most cases.

183

8.24.5 METIS PartGraphKway

Synopsis

void METIS PartGraphKway (const
const
const
const
const
const
const
const
const

SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =
SCOTCH_Num =*

SCOTCH_Num =
SCOTCH_Num *

metis_partgraphkway (integerxnum n,

integerxnum
integerxnum
integerxnum
integer*num
integerxnum
integerxnum

xadj,
adijncy,
vwgt,

* %
—_— — — —

*

*

adjwgt,

integer*num nparts,
integerxnum (x) options,

integerxnum

integer*xnum (x*) part)

Description

The METIS PartGraphKway function performs a mapping onto the complete
graph of the graph represented by arrays xadj, adjncy, vwgt and adjwgt,
using the default SCOTCH mapping strategy.

Conforming to the METIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH. The part array has the same meaning as the parttab

array of SCOTCH.

All of the three MEIIS stubs METIS_PartGraphKway, METIS PartGraph
Recursive and METIS_PartGraphVKway call the same SCOTCH routine,
which uses the ScoTCH default mapping strategy proved to be efficient in

most cases.

8.24.6 METIS_PartGraphRecursive

Synopsis

184

n,

xadij,
adjncy,
vwgt,
adjwgt,
wgtflag,
numflag,
nparts,
options,
edgecut,
part)

wgtflag,
numflag,

edgecut,

void METIS PartGraphRecursive (const SCOTCH Num * n,
const SCOTCH.Num *» xadj,
const SCOTCH.Num * adjncy,
const SCOTCH.Num * vwgt,
const SCOTCH.Num *» adjwgt,
const SCOTCH.-Num = wgtflag,
const SCOTCH.Num = numflag,
const SCOTCH.Num * nparts,
const SCOTCH.Num *» options,

SCOTCH_Num =* edgecut,
SCOTCH_Num =* part)
metis_partgraphrecursive (integer*num n,

integerxnum (x) xadij,
integerxnum (%) adjncy,
integerxnum (%) vwgt,
integerxnum (x) adjwgt,
integerxnum wgtflag,
integerxnum numflag,
integerxnum nparts,
integer*xnum (*) options,
integerxnum edgecut,
integer*num (%) part)

Description

The METIS PartGraphRecursive function performs a mapping onto the
complete graph of the graph represented by arrays xadj, adjncy, vwgt and
adjwgt, using the default SCOTCH mapping strategy.

Conforming to the MEIIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH. The part array has the same meaning as the parttab
array of SCOTCH. To date, the computation of the edgecut field requires
extra processing, which increases running time to a small extent.

All of the three MEIIS stubs METIS PartGraphKway, METIS PartGraph
Recursive and METIS PartGraphVKway call the same SCOTCH routine,
which uses the SCOTCH default mapping strategy proved to be efficient in
most cases.

8.24.7 METIS_ PartGraphVKway

Synopsis

185

void METIS_PartGraphVKway (const SCOTCH.Num % n,
const SCOTCH.Num * xadj,

const SCOTCH.Num * adjncy,
const SCOTCH_Num * vwgt,
const SCOTCH.Num * vsize,
const SCOTCH-Num = wgtflag,
const SCOTCH.Num * numflag,
const SCOTCH_Num * nparts,

const SCOTCH.Num * options,

SCOTCH_Num = volume,
SCOTCH_Num =* part)
metis_partgraphvkway (integer*num n,

integer*xnum (x*) xadj,
integerxnum (x) adjncy,
integerxnum (%) vwgt,
integerxnum (x) vsize,
integerxnum wgtflag,
integerxnum numflag,
integer*num nparts,
integerxnum (x) options,
integerxnum volume,
integer*num (%) part)

Description

The METIS PartGraphVKway function performs a mapping onto the com-
plete graph of the graph represented by arrays xadj, adjncy, vwgt and
vsize, using the default SCOTCH mapping strategy.

Conforming to the MEIIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH. The part array has the same meaning as the parttab
array of SCOTCH.

Since ScoTCH does not have methods for explicitely reducing the commu-
nication volume according to the metric of METIS_PartGraphVKway, this
routine creates a temporary edge weight array such that each edge (u,v) re-
ceives a weight equal to mboxvsize(u) +mboxvsize(v). Consequently, edges
which are incident to highly communicating vertices will be less likely to be
cut. However, the communication volume value returned by this routine is ex-
actly the one which would be returned by MEIIS with respect to the output
partition. Users interested in minimizing the exact communication volume
should consider using hypergraphs, implemented in SCOTCH as meshes (see
Section 8.2.3).

All of the three MEIIS stubs METIS_ PartGraphKway, METIS PartGraph
Recursive and METIS_PartGraphVKway call the same SCOTCH routine,
which uses the SCOTCH default mapping strategy proved to be efficient in
most cases.

186

8.24.8 METIS_PartMeshDual

Synopsis

int METIS_PartMeshDual (const SCOTCH.Num * const ne,
const SCOTCH_Num * const nn,
const SCOTCH.Num * const eptr,
const SCOTCH_Num * const eind,
const SCOTCH_Num x const vwgt,
const SCOTCH_Num * const vsize,
const SCOTCH_Num x const ncommon,
const SCOTCH_Num x const nparts,

const double * const tpwgts,
const SCOTCH.Num x const options,
SCOTCH_Num == const objval,
SCOTCH_-Num = const epart,
SCOTCH_Num * const npart)
metis metistodual (integerxnum ne,
integerxnum nn,
integerxnum (x) eptr,
integerxnum (%) eind,
integerxnum (%) vwgt,
integerxnum (x) vsize,
integerxnum ncommon,
integerxnum nparts,
doubleprecisionx (x) tpwgts,
integerxnum (*) options,
integerxnum objval,
integerxnum (%) epart,
integerxnum (*) npart)

Description

Given the eptr and eind arrays describing the element-to-node adjacency
of a mesh with *ne elements and *nn nodes, the METIS_PartMeshDual
function computes a partitioning into nparts of the dual graph of this mesh.
The vertices of the dual graph represent the elements of the mesh, and there
exists an edge between any two graph vertices if and only if there are at least
ncommon shared nodes between the two corresponding elements in the mesh.

Conforming to the METIS API, the base value of the numbering can be defined
by setting options [METIS_OPTION_NUMBERING]. It is the only option sup-
ported by SCOTCH.

On return, the epart and npart arrays contain the element and node par-
titions, respectively. If the function fails, xobjval is set to a negative value
that corresponds to the relevant METIS_ERROR_* code.

187

8.24.9 METIS_ SetDefaultOptions

Synopsis

int METIS_SetDefaultOptions (SCOTCH_-Num x const options)

metis_setdefaultoptions (integer*num (%) options)

Description

This function partially fills the options array with the values that are rel-
evant to the operations of the MEIIS compatibility library. Other values are
set to 0.

The supported options to date are METIS_OPTION_NUMBERING (which allows
one to set the baseval value of LIBSCOTCH routines) and METIS_OPTION_
OBJTYPE (only for computing the partition cost, as SCOTCH does not try
directly to minimize communication volume).

9 Installation

Version 7.0 of the SCOTCH software package is distributed as free/libre software
under the CeCILL-C free/libre software license [7], which is very similar to the
GNU LGPL license. Therefore, it is no longer distributed as a set of binaries,
but instead in the form of a source distribution, which can be downloaded from
the ScoTcH Inria GitLab repository at https://gitlab.inria.fr/scotch/
scotch .

All ScoTcH users are welcome to send an e-mail to the author so that they
can be added to the SCOTCH mailing list, and be automatically informed of new
releases and publications.

The extraction process will create a scotch_7.0.9 directory, containing sev-
eral subdirectories and files. Please refer to the files called LICENSE_EN.txt or
LICENCE_FR.txt, as well as file INSTALL_EN. txt, to see under which conditions
your distribution of SCOTCH is licensed and how to install it.

9.1 Thread issues

To enable the use of POSIX threads in some routines, the SCOTCH_PTHREAD flag
must be set. If your MPI implementation is not thread-safe, make sure this flag is
not defined at compile time.

9.2 File compression issues

To enable on-the-fly compression and decompression of various formats, the rel-
evant flags must be defined. These flags are COMMON_FILE_COMPRESS_BZ2 for
bzip2 (de)compression, COMMON_FILE_COMPRESS_GZ for gzip (de)compression,
and COMMON_FILE_COMPRESS_LZMA for 1zma decompression. Note that the cor-
responding development libraries must be installed on your system before com-
pile time, and that compressed file handling can take place only on systems which

188

https://gitlab.inria.fr/scotch/scotch
https://gitlab.inria.fr/scotch/scotch

support multi-threading or multi-processing. In the first case, you must set the
COMMON_PTHREAD and COMMON_PTHREAD FILE flags in order to take advantage
of these features.

On Linux systems, the development libraries to install are 1ibbzip2_1-devel
for the bzip2 format, z1ibl-devel for the gzip format, and 1iblzmaO-devel
for the 1zma format. The names of the libraries may vary according to operating
systems and library versions. Ask your system engineer in case of trouble.

9.3 Machine word size issues

The integer values handled by SCOTCH are based on the SCOTCH _Num type, which
equates by default to the int C type, corresponding to the INTEGER Fortran type,
both of which being of machine word size. To coerce the length of the SCOTCH _Num
integer type to 32 or 64 bits, one can use the “~-DINTSIZE32” or “~-DINTSIZE64”
flags, respectively, or else use the “~DINT=" definition, at compile time. For in-
stance, adding “~-DINT=1ong” to the CFLAGS variable in the Makefile.inc file
to be placed at the root of the source tree will make all SCOTCH_Num integers
become long C integers.

Whenever doing so, make sure to use integer types of equivalent length to declare
variables passed to SCOTCH routines from caller C and Fortran procedures. Also,
because of API conflicts, the MEIIS compatibility library will not be usable. It is
usually safer and cleaner to tune your C and Fortran compilers to make them inter-
pret int and INTEGER types as 32 or 64 bit values, than to use the aforementioned
flags and coerce type lengths in your own code.

Fortran users also have to take care of another size issue: since there are no
pointers in Fortran 77, the Fortran interface of some routines converts pointers to
be returned into integer indices with respect to a given array (e.g. see sections 8.7.9,
8.12.4 and 8.17.2). For 32_64 architectures, such indices can be larger than the
size of a regular INTEGER. This is why the indices to be returned are defined by
means of a specific integer type, SCOTCH_Idx. To coerce the length of this index
type to 32 or 64 bits, one can use the “-DIDXSIZE32” or “~-DIDXSIZE64” flags,
respectively, or else use the “~DIDX=" definition, at compile time. For instance,
adding “-DIDX="long long"” to the CFLAGS variable in the Makefile.inc
file to be placed at the root of the source tree will equate all SCOTCH_Idx integers to
C long long integers. By default, when the size of SCOTCH_Idx is not explicitly
defined, it is assumed to be the same as the size of SCOTCH_Num.

10 Examples

This section contains chosen examples destined to show how the programs of the
SCOTCH project interoperate and can be combined. It is supposed that the current
directory is directory “scotch_7.0” of the ScoTcH distribution. Character “%”
represents the shell prompt.

e Partition source graph brol.grf into 7 parts, and save the result to file
/tmp/brol .map.

% echo cmplt 7 > /tmp/k7.tgt
% gmap brol.grf /tmp/k7.tgt /tmp/brol.map

This can also be done in a single piped command:

189

% echo cmplt 7 | gmap brol.grf - /tmp/brol.map

If compressed data handling is enabled, read the graph as a gzip compressed
file, and output the mapping as a bzip?2 file, on the fly:

% echo cmplt 7 | gmap brol.grf.gz — /tmp/brol.map.bz2

Partition source graph brol.grf into two uneven parts of respective weights

% and 1—71, and save the result to file /tmp/brol.map.

% echo cmpltw 2 4 7 > /tmp/k2w.tgt
% gmap brol.grf /tmp/k2w.tgt /tmp/brol.map

This can also be done in a single piped command:

% echo cmpltw 2 4 7 | gmap brol.grf - /tmp/brol.map

If compressed data handling is enabled, use gzip compressed streams on the
fly:

% echo cmpltw 2 4 7 | gmap brol.grf.gz -
/tmp/brol.map.gz

Map a 32 by 32 bidimensional grid source graph onto a 256-node hypercube,
and save the result to file /tmp/brol.map.

% gmkm2 32 32 | gmap - tgt/h8.tgt /tmp/brol.map

Build the VTK file brol . vtk that contains the display of a source graph the
topology and geometry files of which are named brol.grf and brol.xyz,
respectively, to be displayed using a visualization software such as paraview.

% gout -Mn -Ov brol.grf brol.xyz - /tmp/brol.vtk

Although no mapping data is required because of the “~Mn” option, note
the presence of the dummy input mapping file name “-”, which is needed to
specify the output visualization file name after it.

Given the topology and geometry files brol.grf and brol.xyz of a source
graph, map the graph on a 8 by 8 bidimensional mesh and display the
mapping result on a color screen by means of the public-domain ghostview
PostScript previewer.

% gmap brol.grf tgt/m8x8.tgt | gout brol.grf brol.xyz
"—Op{c, £,1}’ | ghostview -

Given the topology and geometry files brol.grf and brol.xyz of a source
graph, partition the graph into 7 parts and create a VTK file to be displayed
using a visualization software such as paraview.

% gpart 7 brol.grf | gout brol.grf brol.xyz ’-0v’
/tmp/brol_k7.vtk

190

e Build a 24-node Cube-Connected-Cycles graph target architecture which will
be frequently used. Then, map compressed source file brol.grf.gz onto
it, and save the result to file /tmp/brol .map.

% amk_ccc 3 | acpl - /tmp/ccc3.tgt
% gunzip -c brol.grf.gz | gmap - /tmp/ccc3.tgt
/tmp/brol.map

To speed up target architecture loading in the future, the decomposition-
defined target architecture is compiled by means of acpl.

e Build an architecture graph which is the subgraph of the 8-node de Bruijn
graph restricted to vertices labeled 1, 2, 4, 5, 6, map graph brol.grf onto
it, and save the result to file /tmp/brol.map.

% (gmk_ub2 3; echo 5 1 2 4 5 6) | amk.grf -L | gmap
brol.grf - /tmp/brol.map

Note how the two input streams of program amk_grf (that is, the de Bruijn
source graph and the five-elements vertex label list) are concatenated into a
single stream to be read from the standard input.

e Compile and link the user application brol.c with the LIBSCOTCH library,
using the default error handler.

% cc brol.c -o brol -lscotch —-lscotcherr —-1lm

Note that the mathematical library should also be included, after all of the
ScoTcCH libraries.

e Recompile a program that used MEIIS so that it uses SCOTCH instead.

% cc brol.c -o brol -I${metisdir} -lscotchmetis
—lscotch -lscotcherr —-lmetis —-1m

Note that the “-lscotchmetis” option must be placed before the
“~Imetis” one, so that routines that are redefined by SCOTCH are selected
instead of their MEIIS counterpart. When no other MEIIS routines than the
ones redefined by SCOTCH are used, the “~1metis” option can be omitted.
The “~I${metisdir}” option may be necessary to provide the path to the
original metis.h include file, which contains the prototypes of all of the
MEIS routines.

11 Adding new features to Scotch

Since SCOTCH is free/libre software, users have the ability to add new features to it.
Moreover, as SCOTCH is intended to be a testbed for new partitioning and ordering
algorithms, it has been developed in a very modular way, to ease the development
and inclusion of new partitioning and ordering methods to be called within ScoTcH
strategies.

191

All of the source code for partitioning and ordering methods for graphs and
meshes is located in the src/1libscotch/ source subdirectory. Source file names
have a very regular pattern, based on the internal data structures they handle.

11.1 Graphs and meshes

The basic structures in SCOTCH are the Graph and Mesh structures, which model
a simple symmetric graph the definition of which is given in file graph.h, and a
simple mesh, in the form of a bipartite graph, the definition of which is given in
file mesh.h, respectively. From this structure are derived enriched graph and mesh
structures:

e Bgraph, in file bgraph.h: graph with bipartition, that is, edge separation,
information attached to it;

e Kgraph, in file kgraph.h: graph with mapping information attached to it;

e Hgraph, in file hgraph.h: graph with halo information attached to it, for
computing graph orderings;

e Vgraph, in file vgraph.h: graph with vertex bipartition information at-
tached to it;

e Hmesh, in file hmesh.h: mesh with halo information attached to it, for com-
puting mesh orderings;

e Vmesh, in file vmesh.h: graph with vertex bipartition information attached
to it.

As version 7.0 of the LIBSCOTCH does not provide mesh mapping capabilities, nei-
ther Bmesh nor Kmesh structures have been defined to date, but this work is in
progress, and these features should be available in the upcoming releases.

All of the structures are in fact defined as typedefed types.

11.2 Methods and partition data

Methods are routines which take one of the above structures as input, and update
the fields of the given structure according to the implemented algorithm. Initial
methods will behave irrespective of the former values of the structure (like graph
growing methods, which compute partitions from scratch), while refinement meth-
ods must be provided an existing partition to improve.

In addition to the topological description of the underlying graph, the working
graph and mesh structures comprise variables describing the current state of the
vertex or edge partition. In all cases is provided a partition array called parttax,
of size equal to the number of graph vertices, which tells which part every vertex
is assigned to. Other variables comprise the communication load and the load
imbalance of the current cut, that is, all of the data necessary to measure the
quality of a partition. Some other data are also often provided, such as the number
of vertices in each part and the list of frontier vertices. They are not relevant to
measure the quality of the partition, but to improve the speed of computations.
They are used for instance in the multilevel algorithms to compute incremental
updates of the current partition state, without having to recompute these values
from scratch by considering all of the graph vertices. Implementers of new methods
are highly encouraged to use these variables to speed-up their computations, taking
examples on typical algorithms such as the multilevel or Fiduccia-Mattheyses ones.

192

11.3 Adding a new method to Scotch

We will assume in this section that the new method to add is a graph separation

method. The procedure explained below is exactly the same for graph bipartition-

ing, graph mapping, graph ordering, mesh separation, or mesh ordering methods.
Please proceed as explained below.

1. Write the code of the method itself. First, choose a free two-letter code
to describe your method, say “xy”. In the libscotch source directory,
create files vgraph_separate_xy.c and vgraph_separate_xy.h, basing
on existing files such as vgraph_separate_gg.c and vgraph_separate_
gg.h, for instance.

If the method is complex, it can be split across several other files, which will be
named vgraph_separate_xy_firstmodulename.c, vgraph_separate_
xy_secondmodulename. c, eventually with matching header files.

If the method has parameters, create a structure called VgraphSeparate
XyParam, which contains fields of types that can be handled by the strategy
parser, such as the INT generic integer type (see below), or double, for
instance.

The execution of your method should result in the setting or in the updating of
the Vgraph structure that is passed to it. See its definition in vgraph.h and
read several simple graph separation methods, such as vgraph_separate_
zr.c, to figure out what all of its parameters mean.

At the end of your method, always call, when the SCOTCH_DEBUG_VGRAPH?2
debug flag is set, the vgraphCheck routine, to avoid the spreading of even-
tual bugs to other parts of the LIBSCcOTCH library.

2. Add the method to the parser tables. The files to update are vgraph.
separate_st.c and vgraph_separate_st.h, where “st” stands for
“strategy”.

First, edit vgraph_separate_st.h. In the VgraphSeparateStMethod
Type enumeration, add a line for your new method VGRAPHSEPASTMETH
XY. Then, edit vgraph_separate_st.c, where all of the remaining actions
take place.

In the top of the file, add a #include directive to include vgraph_
separate_xy.h.

If the method has parameters, create a vgraphseparatedefaultxy C
union, basing on an existing one, and fill it with the default values of your
method parameters.

In the vgraphseparatestmethtab method array, add a line for the new
method. To do so, choose a free single-letter code that will be used to designate
the new method in strategy strings. If the method has parameters, the last
field should be a pointer to the default structure, else it should be set to NULL.

If the method has parameters, update the vgraphseparatestparatab
parameter array. Add one data block per parameter. The first field is the
name of the method to which the parameter applies, that is, VGRAPHSEPAST
METHXY. The second field is the type of the parameter, which can be:

e STRATPARAMCASE: the support type is an int. It receives the index in
the case string, which is provided as the last field of the parameter line,
of the given case character;

193

e STRATPARAMDOUBLE: the support type is a double;

e STRATPARAMINT: the support type is an INT, which is the generic inte-
ger type handled internally by ScOTCH. This type has variable extent,
depending on compilation flags, as described in Section 8.1.5;

e STRATPARAMSTRING: a (small) character string;

e STRATPARAMSTRAT: strategy. For instance, the graph ordering method
by nested dissection takes a vertex partitioning strategy as one of its
parameters, to compute the vertex separators.

The fourth and fifth fields are the address of the location of the default struc-
ture and the address of the parameter within this default structure, respec-
tively. From these two values can be computed at run time the offset of the
parameter within any instance of the parameter structure, which is used to
fill the actual structures in the parsed strategy evaluation tree. The value
of the sixth parameter depends on the type of the parameter. It should be
NULL for STRATPARAMDOUBLE and STRATPARAMINT parameters, points to
the string of available case letters for STRATPARAMCASE parameters, points
to the target string buffer for STRATPARAMSTRING parameters, and points
to the relevant method parsing table for STRATPARAMSTRAT parameters.

3. Edit the makefile of the LIBSCOTCH source directory to enable the compilation
and linking of the method. Depending on LIBSCOTCH versions, this makefile
is either called Makefile or make_gen.

4. Compile in debug mode and experiment with your routine, by creating strate-
gies that contain its single-letter code.

5. To change the default strategy string used by the LIBSCOTCH library, update
file 1ibrary_graph_order.c, since it is the graph ordering routine which
makes use of graph vertex separation methods to compute separators for the
nested dissection ordering method.

11.4 Licensing of new methods and of derived works

According to the terms of the CeCILL-C license [7] under which the ScoTcH
software package is distributed, the works that are carried out to improve and
extend the LIBSCOTCH library must be licensed under the same terms. Basically,
it means that you will have to distribute the sources of your new methods, along
with the sources of SCOTCH, to any recipient of your modified version of the
LIBSCOTCH, and that you grant these recipients the same rights of update and
redistribution as the ones that are given to you under the terms of CeCILL-C.
Please read it carefully to know what you can do and cannot do with the ScoTcH
distribution.

You should have received a copy of the CeCILL-C license along with the ScoTCH
distribution; if not, please browse the CeCILL website at http://www.cecill.
info/licenses.en.html.

Credits

I wish to thank all of the following people:

194

http://www.cecill.info/licenses.en.html
http://www.cecill.info/licenses.en.html

e Patrick Amestoy collaborated to the design of the Halo Approximate Mini-
mum Degree algorithm [49] that had been embedded into SCOTCH 3.3, and
provided versions of his Approximate Minimum Degree algorithm, available
since version 3.2, and of his Halo Approximate Minimum Fill algorithm, avail-
able since version 3.4. He designed the mesh versions of the approximate min-
imum degree and approximate minimum fill algorithms, which are available
since version 4.0;

e Clément barthélemy improved the Windows compilation system and coded
the Windows threading module, available since version 7.0.5;

e Sébastien Fourestier coded the mapping with fixed vertices, remapping, and
remapping with fixed vertices sequential routines that are available since ver-
sion 6.0;

e Marc Fuentes designed the mesh-to-dual-graph routines, extended the func-
tional scope of the MEIIS compatibility library, and coded CMake environ-
ment files;

e Jun-Ho Her coded the graph partitioning with overlap routines that were
introduced in the unpublished 5.2 release, subsequently publicly released in
version 6.0;

e Amaury Jacques improved the development environment and contributed to
the consistency checking and non-regression testing routines;

e (Cédric Lachat contributed to the robustness of the software, in relation with
his development of the PAMPA software;

e Tetsuya Mishima contributed to the Windows threading module, available
since version 7.0.5;

e Alex Pothen kindly provided a version of his Multiple Minimum Degree algo-
rithm, which was embedded into SCOTCH from version 3.2 to version 3.4;

e Florent Pruvost set up the continuous integration environment on Inria Git-
Lab;

e Luca Scarano coded the multilevel graph algorithm in ScoTcH 3.1;
e Yves Secretan contributed to the MINGW 32 port;

e David Sherman proofread version 3.2 of this manual.

References

[1] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matriz Anal. and Appl., 17:886-905, 1996.

[2] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM
J. Sci. Comput., 16(6):1404-1411, 1995.

[3] C. Ashcraft, S. Eisenstat, J. W.-H. Liu, and A. Sherman. A comparison of
three column based distributed sparse factorization schemes. In Proc. Fifth
SIAM Conf. on Parallel Processing for Scientific Computing, 1991.

[4] D. Aubert et al. Tulip. Available from https://tulip.labri.fr/.

195

https://tulip.labri.fr/

[5]

S. T. Barnard and H. D. Simon. A fast multilevel implementation of recur-
sive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Ezperience, 6(2):101-117, 1994.

R. F. Boisvert, R. Pozo, and K. A. Remington. The Matrix Market exchange
formats: initial design. NISTIR 5935, National Institute of Standards and
Technology, December 1996.

CeCILL: “CEA-CNRS-INRIA Logiciel Libre” free/libre software license. Avail-
able from http://www.cecill.info/licenses.en.html.

P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un
solveur de type dissections emboitées. Numerische Mathematik, 55:463—-476,
1989.

C. Chevalier and F. Pellegrini. Improvement of the efficiency of genetic algo-
rithms for scalable parallel graph partitioning in a multi-level framework. In
Proc. EuroPar, Dresden, LNCS 4128, pages 243-252, September 2006.

I. Duff. On algorithms for obtaining a maximum transversal. ACM Trans.
Math. Software, 7(3):315-330, September 1981.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-
Boeing sparse matrix collection. Technical Report TR/PA/92/86, CERFACS,
Toulouse, France, October 1992.

F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hyper-
cube by recursive mincut bipartitionning. Journal of Parallel and Distributed
Computing, 10:35-44, 1990.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th Design Automation Conference,
pages 175-181. IEEE, 1982.

S. Fourestier and F. Pellegrini. Adaptation au repartitionnement de graphes
d’une méthode d’optimisation globale par diffusion. In Proc. RenPar’20, Saint-
Malo, France, May 2011.

M. R. Garey and D. S. Johnson. Computers and Intractablility: A Guide to
the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky
factorization. International Journal of Parallel Programming, 18(4):291-314,
1989.

A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky
factorization on a local memory multiprocessor. SIAM Journal on Scientific
and Statistical Computing, 9:327-340, 1988.

A. George and J. W.-H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31:1-19, 1989.

J. A. George and J. W.-H. Liu. Computer solution of large sparse positive
definite systems. Prentice Hall, 1981.

N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. A comparison of several
bandwidth and profile reduction algorithms. ACM Trans. Math. Software,
2:322-330, 1976.

196

http://www.cecill.info/licenses.en.html

[21]

[22]

23]

[26]

[27]

[28]

[29]

[34]

[35]

[36]

A. Gupta, G. Karypis, and V. Kumar. Scalable parallel algorithms for sparse
linear systems. In Proc. Stratagem’96, Sophia-Antipolis, pages 97-110. INRIA,
July 1996.

A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for
sparse matrix factorization. IEEE Trans. Parallel Distrib. Syst., 8(5):502-520,
1997.

S. W. Hammond. Mapping unstructured grid computations to massively parallel
computers. PhD thesis, Rensselaer Polytechnic Institute, Troy, New-York,
February 1992.

B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Tech-
nical Report SAND93-0074, Sandia National Laboratories, January 1993.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Technical Report SAND93-1301, Sandia National Laboratories, June 1993.

B. Hendrickson and R. Leland. The CHACO user’s guide. Technical Report
SAND93-2339, Sandia National Laboratories, November 1993.

B. Hendrickson and R. Leland. The CHACO user’s guide — version 2.0. Technical
Report SAND94-2692, Sandia National Laboratories, 1994.

B. Hendrickson and R. Leland. An empirical study of static load balancing
algorithms. In Proc. SHPCC’94, Knozville, pages 682-685. IEEE, May 1994.

B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning.
In Proceedings of the 8" SIAM Conference on Parallel Processing for Scientific
Computing. IEEE, March 1997.

B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested
dissection ordering. SIAM J. Sci. Comput., 20(2):468-489, 1998.

P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and Y. Saad. High performance
complete and incomplete factorizations for very large sparse systems by using
SCOTCH and PASTIX softwares. In Proc. 11" SIAM Conference on Parallel
Processing for Scientific Computing, San Francisco, USA, February 2004.

J. Hopcroft and R. Karp. An n°/2 algorithm for maximum matchings in bi-
partite graphs. SIAM Journal of Computing, 2(4):225-231, December 1973.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report 95-035, University of Minnesota,
June 1995.

G. Karypis and V. Kumar. MENIS — unstructured graph partitioning and
sparse matrix ordering system — version 2.0. Technical report, University of
Minnesota, June 1995.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Technical Report 95-064, University of Minnesota, August 1995.

G. Karypis and V. Kumar. MEDNS - A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices — Version 4.0. University of Minnesota, September
1998.

197

[37]

[38]
[39]

[40]

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning
graphs. BELL System Technical Journal, pages 291-307, February 1970.

Kitware. Paraview. Available from https://www.paraview.org/.

M. Laguna, T. A. Feo, and H. C. Elrod. A greedy randomized adaptative
search procedure for the two-partition problem. Operations Research, pages
677-687, July 1994.

C. Leiserson and J. Lewis. Orderings for parallel sparse symmetric factoriza-
tion. In Third SIAM Conference on Parallel Processing for Scientific Comput-
ing, 1987.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM Journal of Numerical Analysis, 16(2):346-358, April 1979.

J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elim-
ination. ACM Trans. Math. Software, 11(2):141-153, 1985.

F. Pellegrini. Static mapping by dual recursive bipartitioning of process and
architecture graphs. In Proc. SHPCC’94, Knozuville, pages 486-493. IEEE,
May 1994.

F. Pellegrini. A parallelisable multi-level banded diffusion scheme for comput-
ing balanced partitions with smooth boundaries. In Proc. EuroPar, Rennes,
LNCS 4641, pages 191-200, August 2007.

F. Pellegrini. PT-ScoTcH 5.1 User’s guide. Technical report, LaBRI, Uni-
versité Bordeaux I, August 2008. Available from http://www.labri.fr/
~pelegrin/scotch/.

F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bi-
partitioning algorithm for static mapping. Research Report, LaBRI, Uni-
versité Bordeaux I, August 1996. Available from http://www.labri.fr/
~pelegrin/papers/scotch_expanalysis.ps.gz.

F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In Proc.
HPCN’96, Brussels, LNCS 1067, pages 493-498, April 1996.

F. Pellegrini and J. Roman. Sparse matrix ordering with SCOTCH. In Proc.
HPCN’97, Vienna, LNCS 1225, pages 370-378, April 1997.

F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and
halo approximate minimum degree for efficient sparse matrix ordering. In Proc.
Irregular’99, San Juan, LNCS 1586, pages 986995, April 1999.

Frangois Pellegrini and Cédric Lachat. Process Mapping onto Complex Ar-
chitectures and Partitions Thereof. Research Report RR-9135, Inria Bor-
deaux Sud-Ouest, December 2017. Available from https://hal.inria.
fr/hal-01671156.

A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse
matrix. ACM Trans. Math. Software, 16(4):303-324, December 1990.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matriz Analysis, 11(3):430-452, July
1990.

198

https://www.paraview.org/
http://www.labri.fr/~pelegrin/scotch/
http://www.labri.fr/~pelegrin/scotch/
http://www.labri.fr/~pelegrin/papers/scotch_expanalysis.ps.gz
http://www.labri.fr/~pelegrin/papers/scotch_expanalysis.ps.gz
https://hal.inria.fr/hal-01671156
https://hal.inria.fr/hal-01671156

[53]

[57]

[58]

[59]

[60]

E. Rothberg. Performance of panel and block approaches to sparse Cholesky
factorization on the iPSC/860 and Paragon multicomputers. In Proc. SH-
PCC’94, Knoxville, pages 324-333. IEEE, May 1994.

E. Rothberg and A. Gupta. An efficient block-oriented approach to parallel
sparse Cholesky factorization. In Supercomputing’93 Proceedings. IEEE, 1993.

E. Rothberg and R. Schreiber. Improved load distribution in parallel sparse
Cholesky factorization. In Supercomputing’94 Proceedings. IEEE, 1994.

R. Schreiber. Scalability of sparse direct solvers. Technical Report TR 92.13,
RIACS, NASA Ames Research Center, May 1992.

Inc. Silicon Graphics. Open Inventor. Available from http://oss.sgi.
com/projects/inventor/.

H. D. Simon. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering, 2:135-148, 1991.

W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations
by optimally ordered triangular factorization. J. Proc. IEEE, 55:1801-1809,
1967.

C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Parti-
tioning & mapping of unstructured meshes to parallel machine topologies. In
Proc. Irregular’95, number 980 in LNCS, pages 121-126, 1995.

199

http://oss.sgi.com/projects/inventor/
http://oss.sgi.com/projects/inventor/

	Introduction
	Static mapping
	Sparse matrix ordering
	Contents of this document

	The Scotch project
	Description
	Availability

	Static mapping algorithms
	Cost function and performance criteria
	The Dual Recursive Bipartitioning algorithm
	Partial cost function
	Execution scheme
	Clustering by mapping onto variable-sized architectures

	Static mapping methods
	Graph bipartitioning methods

	Sparse matrix ordering algorithms
	Performance criteria
	Minimum Degree
	Nested dissection
	Hybridization
	Ordering methods
	Graph separation methods

	Updates
	Changes in version 7.0 from version 6.1
	Changes in version 6.1 from version 6.0
	Changes in version 6.0 from version 5.1
	Changes in version 5.1 from version 5.0

	Files and data structures
	Graph files
	Mesh files
	Geometry files
	Target files
	Decomposition-defined architecture files
	Algorithmically-coded architecture files
	Variable-sized architecture files

	Mapping files
	Ordering files
	Vertex list files

	Programs
	Invocation
	Using multi-threading
	Using compressed files
	Description
	acpl
	amk_*
	amk_grf
	atst
	gcv
	gmap / gpart
	gmk_*
	gmk_msh
	gmtst
	gord
	gotst
	gout
	gtst
	mcv
	mmk_*
	mord
	mtst

	Library
	Calling the routines of libScotch
	Calling from C
	Calling from Fortran
	Compiling and linking
	Dynamic library issues
	Machine word size issues
	Using multi-threading

	Data types
	SCOTCH_[2]Arch architecture type
	SCOTCH_[2]Graph graph type
	SCOTCH_[2]Mesh mesh type
	SCOTCH_[2]Geom geometry type
	SCOTCH_[2]Ordering block ordering format

	Strategy strings
	Using default strategy strings
	Mapping strategy strings
	Graph bipartitioning strategy strings
	Vertex partitioning (with overlap) strategy strings
	Ordering strategy strings
	Node separation strategy strings

	Target architecture handling routines
	SCOTCH_archAlloc
	SCOTCH_archExit
	SCOTCH_archInit
	SCOTCH_archLoad
	SCOTCH_archName
	SCOTCH_archSave
	SCOTCH_archSize
	SCOTCH_archSizeof

	Target architecture creation routines
	SCOTCH_archBuild0 / SCOTCH_archBuild
	SCOTCH_archBuild2
	SCOTCH_archCmplt
	SCOTCH_archCmpltw
	SCOTCH_archHcub
	SCOTCH_archLtleaf
	SCOTCH_archMesh2
	SCOTCH_archMesh3
	SCOTCH_archMeshX
	SCOTCH_archSub
	SCOTCH_archTleaf
	SCOTCH_archTorus2
	SCOTCH_archTorus3
	SCOTCH_archTorusX
	SCOTCH_archVcmplt
	SCOTCH_archVhcub

	Target domain handling routines
	SCOTCH_archDomAlloc
	SCOTCH_archDomBipart
	SCOTCH_archDomFrst
	SCOTCH_archDomSize
	SCOTCH_archDomSizeof
	SCOTCH_archDomTerm
	SCOTCH_archDomWght
	SCOTCH_archDomDist
	SCOTCH_archDomNum

	Graph handling routines
	SCOTCH_graphAlloc
	SCOTCH_graphBase
	SCOTCH_graphBuild
	SCOTCH_graphCheck
	SCOTCH_graphCoarsen
	SCOTCH_graphCoarsenBuild
	SCOTCH_graphCoarsenMatch
	SCOTCH_graphColor
	SCOTCH_graphData
	SCOTCH_graphDiamPV
	SCOTCH_graphDump
	SCOTCH_graphExit
	SCOTCH_graphFree
	SCOTCH_graphInduceList
	SCOTCH_graphInducePart
	SCOTCH_graphInit
	SCOTCH_graphLoad
	SCOTCH_graphSave
	SCOTCH_graphSize
	SCOTCH_graphSizeof
	SCOTCH_graphStat

	High-level graph partitioning, mapping and clustering routines
	SCOTCH_graphMap
	SCOTCH_graphMapFixed
	SCOTCH_graphPart
	SCOTCH_graphPartFixed
	SCOTCH_graphPartOvl
	SCOTCH_graphRemap
	SCOTCH_graphRemapFixed
	SCOTCH_graphRepart
	SCOTCH_graphRepartFixed

	Low-level graph partitioning, mapping and clustering routines
	SCOTCH_graphMapCompute
	SCOTCH_graphMapExit
	SCOTCH_graphMapFixedCompute
	SCOTCH_graphMapInit
	SCOTCH_graphMapLoad
	SCOTCH_graphMapSave
	SCOTCH_graphMapView
	SCOTCH_graphRemapCompute
	SCOTCH_graphRemapFixedCompute
	SCOTCH_graphTabLoad
	SCOTCH_graphTabSave

	High-level graph ordering routines
	SCOTCH_graphOrder

	Low-level graph ordering routines
	SCOTCH_graphOrderCheck
	SCOTCH_graphOrderCompute
	SCOTCH_graphOrderComputeList
	SCOTCH_graphOrderExit
	SCOTCH_graphOrderInit
	SCOTCH_graphOrderLoad
	SCOTCH_graphOrderSave
	SCOTCH_graphOrderSaveMap
	SCOTCH_graphOrderSaveTree

	Mesh handling routines
	SCOTCH_meshAlloc
	SCOTCH_meshBuild
	SCOTCH_meshCheck
	SCOTCH_meshData
	SCOTCH_meshExit
	SCOTCH_meshGraph
	SCOTCH_meshGraphDual
	SCOTCH_meshInit
	SCOTCH_meshLoad
	SCOTCH_meshSave
	SCOTCH_meshSize
	SCOTCH_meshSizeof
	SCOTCH_meshStat

	High-level mesh ordering routines
	SCOTCH_meshOrder

	Low-level mesh ordering routines
	SCOTCH_meshOrderCheck
	SCOTCH_meshOrderCompute
	SCOTCH_meshOrderExit
	SCOTCH_meshOrderInit
	SCOTCH_meshOrderSave
	SCOTCH_meshOrderSaveMap
	SCOTCH_meshOrderSaveTree

	Strategy handling routines
	SCOTCH_stratAlloc
	SCOTCH_stratExit
	SCOTCH_stratInit
	SCOTCH_stratSave
	SCOTCH_stratSizeof

	Strategy creation routines
	SCOTCH_stratGraphBipart
	SCOTCH_stratGraphClusterBuild
	SCOTCH_stratGraphMap
	SCOTCH_stratGraphMapBuild
	SCOTCH_stratGraphPartOvl
	SCOTCH_stratGraphPartOvlBuild
	SCOTCH_stratGraphOrder
	SCOTCH_stratGraphOrderBuild
	SCOTCH_stratMeshOrder
	SCOTCH_stratMeshOrderBuild

	Geometry handling routines
	SCOTCH_geomAlloc
	SCOTCH_geomData
	SCOTCH_geomExit
	SCOTCH_geomInit
	SCOTCH_geomSizeof
	SCOTCH_graphGeomLoadChac
	SCOTCH_graphGeomLoadHabo
	SCOTCH_graphGeomLoadScot
	SCOTCH_graphGeomSaveChac
	SCOTCH_graphGeomSaveScot
	SCOTCH_meshGeomLoadHabo
	SCOTCH_meshGeomLoadScot
	SCOTCH_meshGeomSaveScot

	Other data structure handling routines
	SCOTCH_mapAlloc
	SCOTCH_mapSizeof
	SCOTCH_orderAlloc
	SCOTCH_orderSizeof

	Error handling routines
	SCOTCH_errorPrint
	SCOTCH_errorPrintW
	SCOTCH_errorProg

	Random generator handling
	SCOTCH_randomProc
	SCOTCH_randomReset
	SCOTCH_randomSeed
	SCOTCH_randomVal

	Context handling routines
	SCOTCH_contextInit
	SCOTCH_contextExit
	SCOTCH_contextOptionGetNum
	SCOTCH_contextOptionSetNum
	SCOTCH_contextRandomClone
	SCOTCH_contextRandomReset
	SCOTCH_contextRandomSeed
	SCOTCH_contextSizeof
	SCOTCH_contextThreadImport1
	SCOTCH_contextThreadImport2
	SCOTCH_contextThreadSpawn
	SCOTCH_contextBindGraph
	SCOTCH_contextBindMesh

	Memory management
	SCOTCH_memCur
	SCOTCH_memFree
	SCOTCH_memMax

	Miscellaneous routines
	SCOTCH_numSizeof
	SCOTCH_version

	MeTiS compatibility library
	METIS_EdgeND
	METIS_MeshToDual
	METIS_NodeND
	METIS_NodeWND
	METIS_PartGraphKway
	METIS_PartGraphRecursive
	METIS_PartGraphVKway
	METIS_PartMeshDual
	METIS_SetDefaultOptions

	Installation
	Thread issues
	File compression issues
	Machine word size issues

	Examples
	Adding new features to Scotch
	Graphs and meshes
	Methods and partition data
	Adding a new method to Scotch
	Licensing of new methods and of derived works

