[
¥
v

I
-
.y
h‘-&-hh Jnn
y
y
- h

¥

Scotch 7.0 Maintainer’s Guide

(version 7.0.9)

Francois Pellegrini
Université de Bordeaux & LaBRI, UMR CNRS 5800
TadAAM team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE
francois.pellegrini@u-bordeaux.fr

August 29, 2025

Abstract

This document describes some internals of the LIBSCOTCH library.

Contents
1 Introduction

2 Coding style

2.1 Typing
2.1.1 Spacing
2.1.2 Aligning
2.1.3 Idiomatic specificities

2.2 Indenting

2.3 Commentso

3 Naming conventions

3.1 File inclusion markers
3.2 Variablesand fields
3.3 Functions
34 Arrayindex basing

4 Structure of the libScotch library

5 Files and data structures
5.1 Decomposition-defined architecture files

6 Data structure explanations

6.1 Dorder e e
6.1.1 DorderIndeX v v v v i
6.1.2 DorderLink
6.1.3 DorderNode o v i i
6.1.4 DorderCblk e

6.2 Graph

6.3 Hgraph e

6.4 Kgraph
6.4.1 Mappings

6.5 Mapping it e e e e

6.6 Order e
6.6.1 OrderCblk it

6.7 Hashtables
6.7.1 Datastructureo
6.7.2 Operation L
6.73 Resizingo

7 Code explanations

7.1 dgraphCoarsenBuild () i
7.1.1 Creating the fine-to-coarse vertex array

7.2 dgraphFold() and dgraphFoldDup ()«
7.2.1 dgraphFoldComm () & v v v v v v v v v

7.3 dmeshDgraphDual () v v v i i it e
7.3.1 Determining the node vertex range
7.3.2 Creating node adjacencies
7.3.3 Making node adjacencies available to concerned elements
7.3.4 Creating the element-to-element adjacencies

CU s W W W W

o 0o S ot G

8 Procedures for new developments and release 38

8.1 Adding methods to the LIBSCOTCH library 38
811 Whattoadd 38
8.1.2 Wheretoadd 38
8.1.3 Declaring the new method to the parser 39

8.1.4 Adding the new method to the MAKE compilation environment 40
8.1.5 Adding the new method to the CMAKE compilation environment 40

8.2 Adding routines to the public APT 40
8.3 Release procedure 41
8.3.1 Removal of debugging flags 41
8.3.2 Symbol renamingo 41
8.3.3 Update of copyright year 41
8.3.4 Update of version number 42
8.3.5 Generation of documentation 42
8.3.6 Creation of the local tag 42
8.3.7 Merging 42
8.3.8 Creation of the publictag 43
8.3.9 Generation of theasset 43

1 Introduction

This document is a starting point for the persons interested in using SCOTCH as
a testbed for their new partitioning methods, and/or willing to contribute to it by
making these methods available to the rest of the scientific community.

Much information is missing. If you need specific information, please send an
e-mail, so that relevant additional information can be added to this document.

2 Coding style

The ScoTcH coding style is now well established. Hence, potential contributors
are requested to abide by it, to provide a global ease of reading while browsing the
code, and to ease the work of their followers.

In this section, the numbering of the characters of each line is assumed to start
from zero.

2.1 Typing
2.1.1 Spacing

Expressions are like sentences, where words are separated by spaces. Hence, an
expression like “if (n == NULL) {” reads: “if n is-equal-to NULL then”, with
words separated by single spaces.

As in standard typesetting, there is no space after an opening parenthesis, nor
before a closing one, because they are not words.

When it follows a keyword, an opening brace is always on the same line as the
keyword (save for special cases, e.g. preprocessing macros between the keyword
and the opening brace). This is meant to maximize the number of “useful readable
lines” on the screen. However, closing braces are on a separate line, aligned with
the indent of the line that contains the matching opening brace. This is meant to
find in a glance the line that contains this opening brace.

Brackets are not considered as words: they are stuck both to the word on their
left and the word on their right.

Reference and dereference operators “&” and “x” are stuck to the word on their
right. However, the multiplication operator “*” counts as a word in arithmetic
expressions.

Semicolons are always stuck to the word on their left, except when they follow
an empty instruction, e.g., an empty loop body or an empty for field. Empty
instructions are materialized by a single space character, which makes the semicolon
separated from the preceding word. For instance: “for (; ;) ;7.

Ternary operator elements “?” and “:” are considered as words and are sur-
rounded by spaces. When the ternary construct spans across multiple lines, they
are placed at the beginning of each line, before the expression they condition, and
not at the end of the previous line.

2.1.2 Aligning

When several consecutive lines contain similar expressions that are strongly con-
nected, e.g. arguments of a memAllocGroup () routine, or assignments of multiple
fields of the same structure(s), extra spaces can be added to align parts of the ex-
pressions. This is a matter of style and opportunity.

For instance, when consecutive lines contain function calls where opening paren-
theses are close to each other and their arguments overlap, open parentheses have
to be aligned. However, when arguments do not overlap, alignment is not required
(e.g., for return statements with small parameters).

2.1.3 Idiomatic specificities

While, in C, return is a keyword which does not need parentheses around its
argument, the SCOTCH coding style treats it as if it were a function call, thus
requiring parentheses around its argument when it has one.

2.2 Indenting

Indenting is subject to the following rules:

e All indents are of two characters. Hence, starting from column zero, all lines
start at even column numbers.

e Tabs are never used in the source code. If your text editor replaces chunks
of spaces by tabs, it is your duty to disable this feature or to make sure to
replace all tabs by spaces before the files are committed. Unwanted tabs are
shown in red when performing a “git diff” prior to committing.

Condition bodies are always indented on the line below the condition statement.
“if” statements are always placed at the beginning of a new line, except when used
as an “else 1if” construct, in which the two keywords appear on the same line,
separated by a single space.

Loop bodies are always indented on the line below the loop statement, except
when the loop body is an empty instruction. In this case, the terminating semicolon
is placed on the same line as the loop statement, after a single space.

2.3 Comments

All comments are C-style, that is, of the form “/x...x/”. C++-style comments
should never be used.

There are three categories of comments: file comments, function/data structure
comments, and line comments. Commenting is subject to the following rules:

e File comments are standard header blocks that must be copied as is. Hence,
there is little to say about them. On top of each file should be placed a license
header, which depends on the origin of the file.

e Block comments start with “/+” and end with “x/” on a separate subsequent
line. Intermediate lines start with “xx”. All these comment markers are
placed at colums zero. Comment text is separated from the comment markers
by a single space character. Text in block comments is made of titles or of
full sentences, that are terminated with a punctuation sign (most often a final

dot).

e Line comments are of two types: structure definition line comments in header
files, and code line comments.

Structure definition line comments in header files start with “/++” and end
with “+x/”. This is an old Doxygen syntax, which has been preserved over
time. Code line comments start classically with “/+” and end with “x/”.

All these comments start at least at character 50. If the C code line is longer,
comment lines start one character after the end of the line, after a single space.
End comment markers are placed at least one character after the end of the
comment text. When several line comments are present on consecutive lines,
comment terminators are aligned to the farthest comment terminator.

Comment text always starts with an uppercase letter, and have no terminating
punctuation sign. They are written in the imperative mode, and a positive
form (no question asked).

Line comments for C pre-processing conditional macros (e.g. “#else” or
“#endif”) are not subject to indentation rules. They start one character
after the keyword, and are not subject to end marker alignment, except when
consecutive lines bear the same keyword (i.e., a “#endif” statement).

3 Naming conventions

Data types, variables, structure fields and function names follow strict nam-
ing conventions. These conventions strongly facilitate the understanding of the
meaning of the expressions, and prevent from coding mistakes. For instance,
“verttax [edgenum]” would clearly be an invalid expression, as a vertex array
cannot be indexed by an edge number. Hence, potential contributors are required
to follow them strictly.

3.1 File inclusion markers

File inclusion markers are #define’s which indicate that a given source file (either
a “.c” source code file or a “.h” header file) has been already encountered.

To minimize risks of collisions with symbols of external libraries, file inclusion
markers start with a prefix that represents the name of the project, followed by

the name of the file in question (without its type suffix). While filenames can be
long, this is not an issue since the length of the significant part of C preprocessor
symbols is at least 63 characters!, thus longer than that of C identifiers, which is
32 characters. Header file marker identifiers are suffixed with “_H”, while C source
file markers have no suffix.

In order to further minimize risks of collisions, file inclusion markers should be
placed in a file only when needed, that is, when effectively used as the parameter
of a conditional inclusion statement within another source file.

The current project prefixes are:

e SCOTCH_: the SCOTCH project itself;

e ESMUMPS_: the ESMUMPS library, which is treated as a separate project to
avoid conflicts with data structures and files that exist in both libraries, such
as Graph’s.

3.2 Variables and fields

Variables and fields of the sequential SCOTCH software are commonly built from
a radical and a suffix. When contextualization is required, e.g., the same kind
of variable appear in two different objects, a prefix is added. In PT-ScoTcH,
a second radical is commonly used, to inform on variable locality or duplication
across processes.

Common radicals are:

e vert: vertex.
e velo: vertex load.
e vnoh: non-halo vertex, as used in the Hgraph structure.

e vnum: vertex number, used as an index to access another vertex structure.
This radical typically relates to an array that contains the vertex indices, in
some original graph, corresponding to the vertices of a derived graph (e.g., an
induced graph).

e v1bl: user-defined vertex label (at the user API level).
e edge: edge (i.e.., arcs, in fact).

e edlo: edge (arc) load.

e enoh: non-halo edge (i.e.., arcs, in fact).

e arch: target architecture.

e graf: graph.

e mesh: mesh.

Common suffices are:

e bas: start “based” value for a number range; see the “nnd” suffix below. For
number basing and array indexing, see Section 3.4.

e end: vertex end index of an edge (e.g., vertend, wrt. vertnum). The end
suffix is a sub-category of the num suffix.

1See e.g. https://gcc.gnu.org/onlinedocs/cpp/Implementation—limits.html

https://gcc.gnu.org/onlinedocs/cpp/Implementation-limits.html

nbr: number of instances of objects of a given radical type (e.g., vertnbr,
edgenbr). They are commonly used within “un-based” loop constructs, such
as: “for (vertnum = 0; vertnum < vertnbr; vertnum ++) ...”".
nnd: end based value for a number range, commonly used for loop boundaries.
Usually, xnnd = «nbr-+baseval. For instance, vertnnd = vertnbr+baseval.
They are commonly used in based loop constructs, such as: “for (vertnum
= baseval; vertnum < vertnnd; vertnum ++) ...”. For local ver-
tex ranges, e.g., within a thread that manages only a partial vertex range,
the loop construct would be: “for (vertnum = vertbas; vertnum <
vertnnd; vertnum ++) ...”".

num: based or un-based number (index) of some instance of an object of
a given radical type. For instance, vertnum is the index of some (graph)
vertex, that can be used to access adjacency (verttab) or vertex load
(velotab) arrays. 0 < vertnum < vertnbr if the vertex index is un-based,
and baseval < vertnum < vertnnd if the index is based, that it, counted
starting from baseval.

ptr: pointer to an instance of an item of some radical type (e.g., grafptr).

sum: sum of several values of the same radical type (e.g., velosum,
edlosum).

tab: reference to the first memory element of an array. Such a reference is
returned by a memory allocation routine (e.g., memaAlloc) or allocated from
the stack.

tax (for “table access”): reference to an array that will be accessed using
based indices. See Section 3.4.

tnd: pointer to the based after-end of an array of items of radix type (e.g.
velotnd). Variables of this suffix are mostly used as bounds in loops.

val: value of an item. For instance, baseval is the indexing base value, and
veloval is the load of some vertex, that may have been read from a file.

Common prefixes are:

src: source, wrt. active. For instance, a source graph is a plain Graph
structure that contains only graph topology, compared to enriched graph data
structures that are used for specific computations such as bipartitioning.

act: active, wrt. source. An active graph is a data structure enriched with
information required for specific computations, e.g. a Bgraph, a Kgraph or
a Vgraph compared to a Graph.

ind: induced, wrt. original.
src: source, wrt. active or target.

org: original, wrt. induced. An original graph is a graph from which a
derived graph will be computed, e.g. an induced subgraph.

tgt: target.

coar: coarse, wrt. fine (e.g. coarvertnum, as a variable that holds the
number of a coarse vertex, within some coarsening algorithm).

e fine: fine, wrt. coarse.

e mult: multinode, for coarsening.

3.3 Functions

Like variables, routines of the SCOTCH software package follow a strict naming

scheme, in an object-oriented fashion. Routines are always prefixed by the name of

the data structure on which they operate, then by the name of the method that is

applied to the said data structure. Some method names are standard for each class.
Standard method names are:

e Alloc: dynamically allocate an object of the given class. Not always avail-
able, as many objects are allocated on the stack as local variables.

e Init: initialization of the object passed as parameter.

e Free: freeing of the external structures of the object, to save space. The
object may still be used, but it is considered as “empty” (e.g., an empty
graph). The object may be re-used after it is initialized again.

e Exit: freeing of the internal structures of the object. The object must not
be passed to other routines after the Exit method has been called.

e Copy: make a fully operational, independent, copy of the object, like a “clone”
function in object-oriented languages.

e Load: load object data from stream.
e Save: save object data to stream.
e View: display internal structures and statistics, for debugging purposes.

e Check: check internal consistency of the object data, for debugging purposes.
A Check method must be created for any new class, and any function that
creates or updates an instance of some class must call the appropriate Check
method, when compiled in debug mode.

3.4 Array index basing

The LIBSCOTCH library can accept data structures that come both from FORTRAN,
where array indices start at 1, and C, where they start at 0. The start index for
arrays is called the “base value”, commonly stored in a variable (or field) called
baseval.

In order to manage based indices elegantly, most references to arrays are based
as well. The “table access” reference, suffixed as “tax” (see Section 3.2), is defined
as the reference to the beginning of an array in memory, minus the base value (with
respect to pointer arithmetic, that is, in terms of bytes, times the size of the array
cell data type). Consequently, for any array whose beginning is pointed to by *tab,
we have #tax = xtab — baseval. Consequently xtax[baseval always represents
the first cell in the array, whatever the base value is. Of course, memory allocation
and freeing operations must always operate on *tab pointers only.

In terms of indices, if the size of the array is xxxxnbr, then xxxxnnd =
xxxxnbr + baseval, so that valid indices xxxxnum always belong to the range
[paseval;vertnnd[. Consequently, loops often take the form:

for (xxxxnum = baseval; xxxxnum < xxxxnnd; xxxxnum ++) {
xxxxtax [xxxxnum] = ...;

}

4 Structure of the libScotch library

As seen in Section 3.3, all of the routines that comprise the LIBSCOTCH project
are named with a prefix that defines the type of data structure onto which they
apply and a prefix that describes their purpose. This naming scheme allows one to
categorize functions as methods of classes, in an object-oriented manner.

This organization is reflected in the naming and contents of the various source
files.

The main modules of the LIBSCOTCH library are the following:

e arch: target architectures used by the static mapping methods.
e bgraph: graph edge bipartitioning methods, hence the initial.
e graph: basic (source) graph handling methods.

e hgraph: graph ordering methods. These are based on an extended “halo”
graph structure, thus for the initial.

e hmesh: mesh ordering methods.

e kgraph: k-way graph partitioning methods.

e library: API routines for the LIBSCOTCH library.

e mapping: definition of the mapping structure.

e mesh: basic mesh handling methods.

e order: definition of the ordering structure.

e parser: strategy parsing routines, based on the FLEX and BISON parsers.
e vgraph: graph vertex bipartitioning methods, hence the initial.

e vmesh: mesh node bipartitioning methods.

Every source file name is made of the name of the module to which it belongs,
followed by one or two words, separated by an underscore, that describe the type
of action performed by the routines of the file. For instance, for module bgraph:

e bgraph.h is the header file that defines the Bgraph data structure,

e bgraph bipart_fm. [ch] are the files that contain the Fiduccia-
Mattheyses-like graph bipartitioning method,

e bgraph_check.c is the file that contains the consistency checking routine
bgraphCheck for Bgraph structures,

and so on. Every source file has a comments header briefly describing the purpose
of the code it contains.

5 Files and data structures

User-manageable file formats are described in the SCOTCH user’s guide. This section
contains information that are relevant only to developers and maintainers.

For the sake of portability, readability, and reduction of storage space, all the
data files shared by the different programs of the SCOTCH project are coded in plain
ASCII text exclusively. Although one may speak of “lines” when describing file for-
mats, text-formatting characters such as newlines or tabulations are not mandatory,
and are not taken into account when files are read. They are only used to provide
better readability and understanding. Whenever numbers are used to label objects,
and unless explicitely stated, numberings always start from zero, not one.

5.1 Decomposition-defined architecture files

Decomposition-defined architecture files are the way to describe irregular target
architectures that cannot be represented as algorithmically-coded architectures.

Two main file formats coexist: the “deco 0” and “deco 2” formats. “deco”
stands for “decomposition-defined architecture”, followed by the format number.
The “deco 1” format is a compiled form of the “deco 07 format. We will describe
it here.

The “deco 1” file format results from an O(p?) preprocessing of the “deco
0” target architecture format. While the “deco 0” format contains a distance
matrix between all pairs of terminal domains, which is consequently in in ©(p?/2),
the “deco 1”7 format contains the distance matrix between any pair of domains,
whether they are terminal or not. Since there are roughly 2p non-terminal domains
in a target architecture with p terminal domains, because all domains form a binary
tree whose leaves are the terminal domains, the distance matrix of a “deco 1”
format is in ©(2p?), that is, four times that of the corresponding “deco 07 file.

Also, while the “deco 0” format lists only the characteristics of terminal do-
mains (in terms of weights and labels), the “deco 1” format provides these for all
domains, so as to speed-up the retrieval of the size, weight and label of any domain,
whether it is terminal or not.

The “deco 1”7 header is followed by two integer numbers, which are the number
of processors and the largest terminal number used in the decomposition, respec-
tively (just as for “deco 07 files). Two arrays follow.

The first array has as many lines as there are domains (and not only terminal
domains as in the case of “deco 07 files). Each of these lines holds three numbers:
the label of the terminal domain that is associated with this domain (which is the
label of the terminal domain of smallest number contained in this domain), the size
of the domain, and the weight of the domain. The first domain in the array is the
initial domain holding all the processors, that is, domain 1. The other domains in
the array are the resulting subdomains, in ascending domain number order, such
that the two subdomains of a given domain of number ¢ are numbered 27 and 27+ 1.

The second array is a lower triangular diagonal-less matrix that gives the dis-
tance between all pairs of domains.

For instance, Figure 1 and Figure 2 show the contents of the “deco 0” and
“deco 1” architecture decomposition files for UB(2, 3), the binary de Bruijn graph
of dimension 3, as computed by the amk_grf program.

10

1 deco 0

/\ 8 15
115

0
3 2 11 14
/\ /\ 21 13
7 6 4 5 >
41 12
/><\ 519
15 14 12 13 911 8 10 61 8
D D D P 71 10
21
212

1112

32112

222111

3231221

Figure 1: “deco 07 target decomposition file for UB(2,3). The terminal numbers
associated with every processor define a unique recursive bipartitioning of the target
graph.

6 Data structure explanations

This section explains some of the data structures implemented in SCOTCH and
PT-ScorcH.

6.1 Dorder

Distributed orderings are data structures used in PT-SCOTCH to represent order-
ings distributed on a set of processing elements. Like for the centralized ordering
of type Order (see Section 6.6), a distributed ordering consists of an inverse per-
mutation, which provides the old indices of the reordered vertices, and a column
block decomposition of the reordered matrix, to help perform more efficient block
computations at the solve stage. The column block decomposition is defined as a
tree structure, the nodes of which, of type DorderCblk, represent column blocks
tree nodes containing consecutive, reordered vertices. A tree node may have chil-
dren nodes, which represent the decomposition of a column block into sub-column
blocks, e.g., when a subdomain is decomposed into two separated subdomains and
a separator.

Because its column blocks are distributed across multiple processing elements,
the Dorder data type is much more complex than the Order data type. Hence, it
is important to fully understand the Order data type before delving into the me-
anders of the Dorder data type and its ancillary data types. The main difference
between the two is that, since graphs are distributed across multiple processing ele-
ments, column block information has to be duplicated on all the processing elements
which contain a piece of a given graph. In order to reconciliate this information, to
provide a centralized block column ordering, all distributed column block tree node
structures are identified by a DorderIndex data structure.

The distributed column block tree data structure, created by way of parallel
graph separation algorithms, always ends up in leaves, when nested dissection no
longer succeeds or when the distributed subgraphs are folded onto single processing

11

deco 22221221
1 31221222
8 15 31221212
0 88 11223231
34 4 22313232
0 4 4 13312212
522 11221112
322 21221112
222 22332231
022 22132122
6 11 12211222
511 11133233
711 21233212
311 1

4 11

211

111

011

Figure 2: “deco 1” target decomposition file for UB(2, 3), compiled with the acpl
tool from the “deco 0” file displayed in Figure 1.

elements. As soon as the latter happens, a purely sequential graph ordering process
can take place on each of them. This leads to the creation of a leaf DorderCblk
node, into which the resulting locally-computed, centralized column block sub-tree
is compacted as an array of DorderNode data structures. From the above, at the
time being, the distributed column block tree structure contains only either nested
dissection nodes, of type DORDERCBLKNEDTI, and leaf nodes, of type DORDERCBLK
LEAF. In order to facilitate the integration of centralized column block sub-trees
into a global distributed column block tree, the values of the type flags are the same
for the Dorder and Order data types.
The fields of the Dorder data structure are the following:

baseval
Base value for the inverse permutation.

vnodglbnbr
Overall number of node vertices to order across all processing elements. For
graph orderings, this number is equal to the number of non-halo vertices in
the initial graph.

cblklocnbr

Local number of locally-rooted column blocks. This number is the sum of
the number of centralized column blocks, of type DorderNode, held by the
current processing element, plus the number of distributed column block tree
nodes, of type DorderCblk, the proclocnum index of which is equal to
the rank of the processing element. This allows one to count only once each
distributed column block tree node, when summing the cblklocnbr fields
over all processing elements.

linkdat
Start of the doubly-linked list of distributed column block tree nodes, of type
DorderCblk, on the given processing element. This list is circular, to allow
for the insertion of new nodes at the end of the list in constant time.

12

proccomm
MPI communicator for managing the distributed ordering. It should be the
same as that of the initial distributed graph to be ordered.

proclocnum
Rank of the given processing element within the communicator.

mutelocdat
When multi-threading is activated, allows one to create critical sections to
update the ordering data in a thread-safe manner.

6.1.1 DorderIndex

Since the ordering data structure is distributed, pointers cannot be used to refer
to parent or children column block tree node data structures across processing
elements. The DorderIndex data type defines an identifier for column block tree
nodes. These identifiers are unique, in the sense that, on each processing element, no
two DorderCblk structures will have the same identifier. However, several Dorder
Cblk structures may bear the same DorderIndex values on different processing
elements, in the case when they are siblings which maintain the local information
about the same distributed column block tree node.
The fields of the DorderIndex data type are the following:

proclocnum
Smallest rank among the processing elements on which a copy of the column
block tree node resides.

cblklocnum
Local number of the column block tree node data structure on the processing
element of aforementioned rank.

6.1.2 DorderLink

Since distributed column block tree nodes, of type DorderCblk, are created on the
fly on each processing element, are in small numbers, and are heavy structures, they
are not stored in a single resizable array, but as individual cells which are allocated
when needed. Consequently, these structures have to be linked together, for proper
management.

The DorderLink data type aims at chaining all DorderCblk structures in
a circular, doubly-linked list. New nodes are inserted at the end of the list, such
that a simple traversal yields nodes in ascending creation order, which is essential
for locally-rooted nodes when gathering them to create a centralized ordering. The
DorderLink structure is the first field of the DorderCblk structure, so that a
simple pointer cast allows one to retrieve the tree node structure from the current
link.

The fields of the DorderLink data structure are the following:

nextptr
Pointer to the next distributed column block tree node created on the given
processing element.

prevptr
Pointer to the previous distributed column block tree node created on the
given processing element.

13

6.1.3 DorderNode

The distributed column block tree data structure ends up in leaves, when either
the parallel nested dissection stops, or when distributed subgraphs are located on
single processing elements. In the first case, the distributed subgraph is centralized,
after which, in both cases, a centralized ordering strategy is applied to the cen-
tralized subgraph, and a centralized block ordering is computed. This centralized
block ordering is represented as an Order data structure, containing an inverse
permutation and a tree of OrderCblk nodes. Since the distributed ordering will
eventually have to be centralized, the local, centralized orderings will have to be
compacted and sent to the root processing element. In order to anticipate this
and to save space, once a centralized ordering is computed on some processing ele-
ment, the resulting column block tree is compacted into a single array of Dorder
Node cells.
The fields of the DorderNode data type are the following:

fathnum
Un-based index of the father node of the given node in the node array, or —1
if the given node is a local root and has to be connected to the father of the
local leaf of the distributed column block tree.

typeval
Type of centralized column block tree node. The admissible values are con-
stants of the kind ORDERCBLK «.

vnodnbr
Number of node vertices in the column block.

cblknum
Rank of the tree node among the children of its father, starting from zero.

Like for the DorderCblk data type, there are no references from a node to
its children, but a reference from each node to its father, with all information
needed to rebuild a global centralized column block tree when all node information
is centralized on a single processing element.

6.1.4 DorderCblk

The DorderCblk data type represents distributed column block tree nodes within
distributed orderings. A tree node may be a leaf node, or have children nodes which
describe the decomposition of a column block into sub-column blocks, e.g., when a
graph is decomposed into two separated subgraphs and a separator.

Since, by nature, every distributed column block tree node concerns a set of
vertices distributed across a set of processing elements, each of the latter holds
a copy of the tree node, the identifier of which, of type DorderIndex, contains
identical information: the smallest rank among the involved processing elements
within the communicator used to manage the distributed ordering, and an index
incrementally generated on this processing element. Unlike for the Order data
type, there are no pointers from a tree node to its child nodes; on the opposite,
the DorderCblk node contains a DorderIndex referring to its father node. The
only information a tree node will hold about its children is their number.

The fields of the DorderCblk data type are the following:

14

linkdat
Doubly-linked list structure to chain together all the DorderCblk structures
on a given processing element.

ordelocptr
Pointer to the distributed ordering to which the given distributed column
block tree node belongs.

typeval
Type of tree node; at the time being, it is either DORDERCBLKNEDI for a
nested dissection node, or DORDERCBLKLEAF for a leaf node.

fathnum
Identifier of the father of the given column block tree node. If the given tree
node is a root, the value of the father index is { 0, -1 }.

cblknum
Identifier of the given column block tree node. The process number is the
smallest rank among all the processing elements sharing node vertices, and
the local number is provided incrementally on this processing element.

ordeglbval
Un-based global start index of the node vertices in the distributed column
block tree node.

vnodglbnbr
Number of node vertices contained in the distributed column block tree node,
over all the involved processing elements. If the column block has sub-column
blocks, the sum of all the vhodglbnbr values of the sub-column blocks must
be equal to the vnodglbnbr of the column block.

cblkfthnum
Index of the given column block tree node among its siblings, starting from
zZero.

data
Union field holding the information concerning either the leaf node or the
nested dissection node. This field has two sub-fields:

leaf
Leaf field, which has the following sub-fields:

ordelocval
Un-based start index in the global inverse permutation array for the
local vertices.
vnodlocnbr
Number of node vertices in the given permutation fragment.
periloctab
Pointer to the local, un-based, inverse permutation fragment array,
of size vnodlocnbr. The values of the periloctab array are
based according to the baseval field of the Dorder data type.
nodelocnbr
Number of local column block tree nodes associated with the per-
mutation fragment.

15

nodeloctab
Pointer to the local, un-based, array of local column block tree nodes,
of size nodelocnbr.

cblklocnum
Un-based index, in nodeloctab, of the root local column block tree
node.

nedi
Nested dissection field. This field has a single sub-field:

cblkglbnbr
Number of sub-column blocks within this column block. For nested
dissection, this number is either 2 (two separated parts and no sep-
arator) or 3 (two separated parts and a separator).

6.2 Graph

Graphs are the fundamental underlying data structures of all the algorithms imple-
mented in SCOTCH. The Graph structure is the foundational data structure, from
which subclasses will be derived, according to the specific needs of the ScoTcH
modules. It is sometimes referred to as the source graph structure, with respect to
the target architecture Arch onto which source graphs are to be mapped.

The Graph structure, being a foundational data structure, does not possess
any variable fields related to actual computations, e.g., partition state variables or
an execution context. Such fields will be found in active graphs, e.g., Bgraph,
Kgraph, Vgraph.

A Graph is described by means of adjacency lists. These data are stored in
arrays and scalars of type SCOTCH_Num, as shown in Figures 3 and 4. The Graph
fields have the following meaning;:

baseval
Base value for all array indexing.

vertnbr
Number of vertices in graph.

edgenbr
Number of arcs in graph. Since edges are represented by both of their ends,
the number of edge data in the graph is twice the number of graph edges.

verttax
Based array of start indices in edgetax of vertex adjacency sub-arrays.

vendtax
Based array of after-last indices in edgetax of vertex adjacency sub-arrays.
For any vertex 4, with baseval < i < (vertnbr + baseval), (vendtax[i] —
verttax[i]) is the degree of vertex i, and the indices of the neighbors of i
are stored in edgetax from edgetax[verttax[i]] to edgetax[vendtax[i] — 1],
inclusive.

When all vertex adjacency lists are stored in order in edgetax, it is possible to
save memory by not allocating the physical memory for vendtax. In this case,
illustrated in Figure 3, verttax is of size vertnbr + 1 and vendtax points to
verttax + 1. This case is referred to as the “compact edge array” case, such
that verttax is sorted in ascending order, verttax|baseval] = baseval and
verttax[baseval + vertnbr| = (baseval + edgenbr).

16

baseval
vert nbr

edgenbr

vibltab =
velotab [4[1[4]4]4[4[4]
vendtab —

verttab ’T4 10/13]16/19/22/25

edgetab [3]2][6[3]4]1]7][6][5][1][2]4]2]7[3][7]2]6]2[1]5]5]2]4]

edlotab [1]1]1][2][2]1]2[3][3]1]2]2]2]1][2[1]3]3]3][1]3]1]2]1]

Figure 3: Sample graph and its description using a compact edge array. Numbers
within vertices are vertex indices, bold numbers close to vertices are vertex loads,
and numbers close to edges are edge loads. Since the edge array is compact, verttax
is of size vertnbr + 1 and vendtax points to verttax + 1.

verttab |17| 2|13)10[202723

L

! ! i
edgetab [[3[4[1]7[6[s] [[2]7[3[1[2]4] \B\Z\G\Z\Z\G\S\ZM\ [2[1]s] []

P —————————— I |

vendt ab |20] 8|16/13|23/30/26

ediotab [[2[2[1]2[a[3[[[2[1]2[1]2[2] [1]a[1][1[3[3[a[2[1] [3]1[3] []

Figure 4: Adjacency structure of the sample graph of Figure 3 with disjoint edge
and edge load arrays. Both verttax and vendtax are of size vertnbr. This allows
for the handling of dynamic graphs, the structure of which can evolve with time.

velotax
Optional based array, of size vertnbr, holding the integer load associated with
every vertex.

vnumtax
When the current graph is a subgraph of some initial graph, this based array,
of size vertnbr, holds the initial vertex indices of the subgraph vertices. This
array is not defined (i.e., vnumtax = NULL) when the graph is the initial graph.

edgetax
Based array, of a size equal at least to (max;(vendtax[i]) — baseval), holding
the adjacency array of every vertex.

edlotax
Optional based array, of a size equal at least to (max;(vendtax[i]) — baseval),
holding the integer load associated with every arc. Matching arcs should
always have identical loads.

Dynamic graphs can be handled elegantly by using the vendtax array. In order
to dynamically manage graphs, one just has to allocate verttax, vendtax and

17

edgetax arrays that are large enough to contain all of the expected new vertex and
edge data. Original vertices are labeled starting from baseval, leaving free space at
the end of the arrays. To remove some vertex ¢, one just has to replace verttax|i]
and vendtax[i] with the values of verttax[vertnbr — 1] and vendtax|vertnbr — 1],
respectively, and browse the adjacencies of all neighbors of former vertex vertnbr—1
such that all (vertnbr — 1) indices are turned into és. Then, vertnbr must be
decremented.

To add a new vertex, one has to fill verttax|[vertnbr — 1] and vendtax[vertnbr
— 1] with the starting and end indices of the adjacency sub-array of the new vertex.
Then, the adjacencies of its neighbor vertices must also be updated to account for
it. If free space had been reserved at the end of each of the neighbors, one just has
to increment the vendtax[i] values of every neighbor i, and add the index of the new
vertex at the end of the adjacency sub-array. If the sub-array cannot be extended,
then it has to be copied elsewhere in the edge array, and both verttax[i] and
vendtax[i] must be updated accordingly. With simple housekeeping of free areas
of the edge array, dynamic arrays can be updated with as little data movement as
possible.

6.3 Hgraph

The Hgraph structure holds all the information necessary to represent and perform
computations on a halo graph. This term refers to graphs some vertices of which
are kept to preserve accurate topological information, but are usually not subject to
actual computations. These halo vertices are collectively referred to as the halo of
the graph. Halo graphs are notably used in sparse matrix reordering, where, in the
process of nested dissection, a graph is cut into three pieces: a vertex separator, and
two separated parts. Each of these parts must preserve the real degree information
attached to all their vertices, including those next to the separator. If halo graphs
were not used, the degrees of these vertices would appear smaller than what they
really are in the whole graph. Preserving accurate degree information is essential
for algorithms such as the minimum degree vertex ordering method. Some vertex
separation algorithms also aim at balancing halo vertices; in this case, separators will
be computed on halos, but this information will not be preserved once a separator
has been computed on the regular vertices.

Halo graphs exhibit specific structural and topological properties, illustrated
in Figure 5. In order to distinguish easily halo vertices from regular vertices and
write efficient algorithms, halo vertices have the highest vertex indices in the graph.
Because the degrees of halo vertices need not be preserved, no edges connect two
halo vertices; the adjacency of halo vertices is only made of regular vertices. Also, in
the adjacency arrays of regular vertices, all non-halo vertices are placed before halo
vertices. All these properties allow one to easily induce the non-halo graph from
some halo graph, without having to create new adjacency arrays. An additional
vertex index array is present just for this purpose.

Halo graph fields have the following meaning:

s Underlying source graph that contains all regular and halo vertices. This
is where to search for fields such as baseval, vertnbr, vertnnd, verttax,
vendtax, etc.

vnohnbr
Number of non-halo vertices in graph. Hence, 0 < vnohnbr < s.vertnbr.

18

baseval
ver t nbr
vnohnbr
edgenbr

vendt ab —

verttab [1]4[1013161! 2‘12‘

edgetab [3[2[5]5[4]1]3]7][6]1]2[4][3][2]7]1]2]6]2]5]4]2]
1}

vnhdt ab [4] 8131518

Figure 5: Sample halo graph and its description using a compact edge array. Num-
bers within vertices are vertex indices. Greyed values are indices of halo vertices.
Halo vertices have the highest indices in the graph, and are placed last in the adja-
cency sub-arrays of each non-halo vertex.

vnhdtax

Array of after-last indices in s.edgetax of non-halo vertex adjacency sub-
arrays. Since this information only concerns non-halo vertices, vnhdtax is of
size vnohnbr, not vertnbr. For any non-halo vertex i, with baseval < i <
(vnohnbr + baseval), the indices of the non-halo neighbors of i are stored in
s.edgetax from s.edgetax[s.verttax[i]] to s.edgetax[vnhdtax[i] — 1],
inclusive, and its halo neighbors are stored from s.edgetax [vnhdtax[i]] to
s.edgetax [s.vendtax [¢] — 1], inclusive.

vnlosum
Sum of non-halo vertex loads. Hence, 0 < vnlosum < s.velosum.

enohnbr
Number of non-halo arcs in graph. Hence, 0 < enohnbr < s.edgenbr.

6.4 Kgraph

The Kgraph structure holds all the information necessary to compute a k-way
(re)mapping of some graph onto a target architecture. Consequently, it contains a
Graph, defined as field s, and a reference to an Arch, through the field m.archptr,
as well as two Mapping structures: one for the current mapping to compute, and
one to store the old mapping from which to remap. Additional information comprise
data to model the cost of remapping, and data associated with the state and cost
of the current mapping: list of frontier vertices, load of each partition domain, plus
the execution context for multi-threading execution.

The Graph structure is internal to the Kgraph because every new Kgraph
contains a different graph topology (e.g., a band graph or a coarsened graph). The
Arch is accessed by reference because it is constant data which can be shared by
many Kgraphs. For the sake of consistency, the grafptr fields of each mapping
m and r.m must point to &s, while their two archptr fields must point to the
same target architecture. This redundency is the price to pay for lighter memory
management.

19

6.4.1 Mappings

The domnorg field, which must contain a valid domain in the architecture
m.archptr, is the starting point for the k-way mapping. This domain may be
smaller than the full architecture when parallel partitioning is performed: in this
case, each process may receive a separate subgraph and sub-architecture to work
on.

Each of the two mappings has its own specificities. The current mapping, defined
as field m, is never incomplete: all the cells of its m. parttax array are non-negative
values that index a valid domain in the domain array m.domntab. These do-
mains are all subdomains of the architecture referenced through field m.archptr.
More restrictively, the domains attached to non-fixed vertices must be included in
domnorg, which may be smaller.

The current mapping evolves with time, according to the various algorithms that
the user can activate in the strategy string. These algorithms will create derived
Kgraphs (e.g., band graphs or coarsened graphs), to which mapping methods will
be applied, before the result is ported back to their parent Kgraph. Depending
on the kind of the derived graph, the m.parttax array may be specific, but the
m.domntab array will always be ported back as is. Consequently, in order to save
memory copying, the policy which is implemented is that the derived Kgraph gets
the pointer to the m.domntab of its parent, while the latter is set to NULL. The
derived graph can therefore reallocate the array whenever needed, without the risk
of an old, invalid, pointer being kept elsewhere. Then, when the processing of the
derived Kgraph ends, the most recent pointer is copied back to the m.domntab
field of the parent graph, and the m.parttax array is updated accordingly, after
which the derived Kgraph can be destroyed without freeing the pointer.

The old mapping, defined as field r.m, may contain incomplete mapping infor-
mation: some of the cells of its r .m.parttax array may be equal to —1, to indicate
that no prior mapping information is available (e.g., when the vertex did not exist
in the previous mapping). Since old mappings do not change, the r.m.domntab
field can be shared among all derived Kgraphs. It is protected from double memory
freeing by not setting the MAPPINGFREEDOMN flag in field r.m. flagval.

6.5 Mapping

The Mapping structure defines how individual vertices of a Graph are mapped
individually onto (parts of) an Arch. A mapping is said complete if all source
graph vertices are assigned to terminal target domains, i.e., individual vertices of
the target architecture, or partial if at least one of the source graph vertices is
assigned to a target domain that comprises more than one vertex. In the course
of the graph mapping process, the destination of source vertices are progressively
refined, from an initial target domain that usually describes the whole of the target
architecture, to terminal domains.

Since ArchDom, the data structure that describes target architecture domains,
is big and costly to handle (e.g., to compare if two ArchDoms are identical), the
handling of domains in mapping is indirect: in the part array parttax, each vertex
is assigned an integer domain index that refers to a domain located in the domain
array domntab. Hence, when two graph vertices have the same index in parttax,
they belong to the same domain and induce no communication cost. However, the
opposite is false: two vertices may have a different index in parttax and yet belong
to the same target domain. This is for instance the case when one of the vertices is
a fixed vertex that has been set to a specific terminal domain at initialization time,

20

and one of its neighbors is successively mapped to smaller and smaller subdomains
that eventually amount to the same terminal domain.

In the case of a remapping, the mapping information regarding the former place-
ment of the vertices may be incomplete, e.g., because the vertex did not exist be-
fore. Such a mapping is said to be incomplete. It is characterized by the fact
that some cells of the parttax array are equal to —1, to indicate an unknown
terminal domain number. To allow for this, the mapping must have the MAPPING
INCOMPLETE flag set. Incomplete mappings are only valid when holding remapping
information; new mappings being computed must have all their parttax cells set
with non-negative values that point to valid domains in the domntab array. New
mappings can therefore only be partial or complete.

When a mapping is initialized, all parttax values for non-fixed vertices
are set to index 0, and domntab[0] is set to the root domain for the map-
ping. In the general case for centralized mapping, the initial domain is equal
to archDomFrst (archptr). However, when a centralized mapping process is
launched as a part of a distributed mapping process, the initial domain may be a
subset of the whole target architecture.

There is no obligation for the domntab array to contain only one instance of
some target domain. On the contrary, as described above, the same domain may ap-
pear at least twice: once for fixed vertices, and once for non-fixed vertices on which
mapping algorithms are applied. However, for efficiency reasons (e.g., avoiding to
compute vertex distances that are equal to zero), it is preferable that duplicate do-
mains are avoided in the domntab array. This is the case by nature with recursive
bipartitioning, as the domains associated with branches of the biparitioning tree
are all distinct.

Making the distinction between fixed and non-fixed vertices, which is relevant
to mapping algorithms, is not in the scope of the Mapping data structure, which
only represents a global state. This is why no data related to fixed vertices is
explicitly present in the mapping itself (it may be found, e.g., in the Kgraph data
structure). However, for handling fixed vertices in an efficient way, the semantics
of the Mapping data structure is that all domains that are associated with fixed
vertices must be placed first in the domntab array. The purpose of this separation
is because, when the imbalance of a mapping is computed, the loads of non-fixed
vertices that belong to some (partial) domain and of fixed vertices that belong
to domains that are subdomains of this domain have to be aggregated. This
aggregation procedure is made easier if both types of domains are kept separate.
For efficiency reasons, fixed domains should appear only once in the fixed part of
domntab.

The Mapping structure is mainly used within the Kgraph structure, which
contains two instances of it: one for the current mapping to be computed, and one
for the old mapping, in the case of remapping. The building of a Kgraph from
another one (e.g., when creating a band graph or a coarsened graph) may lead to
situations in which some Mapping arrays may be re-used, and thus should not
be freed when the derived Mapping is freed. This is why the Mapping structure
contains flags to record whether its arrays should be freed or not. These flags are
the following:

MAPPINGFREEDOMN
Set if the domain array has to be freed when the mapping is freed. A common
case for sharing the domain array is when a coarser Kgraph is computed:
the domain array of the coarse old mapping can re-use that of the fine old

21

mapping.

MAPPINGFREEPART
Set if the part array has to be freed when the mapping is freed. A common
case for sharing the part array is when the user part array is kept as the part
array for the initial Kgraph current mapping structure.

The main fields of the Mapping data structure are the following:

flagval
Set of flags indicating whether the parttax and domntab have to be freed
on exit.

grafptr
Pointer to the Graph associated with the mapping, that gives access to
the base value grafptr->baseval and the number of source vertices
grafptr->vertnbr.

archptr
Pointer to the Arch associated with the mapping, that is necessary to perform
all distance computations on the mapping.

parttax
Based array of Anums, of size grafptr->vertnbr, that provides the index
of the target domains onto which all graph vertices are currently mapped.
Indices are un-based.

domntab
Un-based array of ArchDoms, of size domnmax, that stores the target domains
to which source graph vertices are indirectly associated through the parttax
array.

domnnbr
Number of target domain slots currently used in domntab. After a mapping
is initialized, 1 < domnnbr < domnmax, because source graph vertices must
be associated to some domain, hence domntab should at least contain one
domain.

domnnbr
Number of target domain slots currently used in domntab.

domnmax
Size of the domntab array.

mutedat
When multi-threading is activated, allows to create critical sections to update
the mapping data in a thread-safe manner.

6.6 Order

Orderings are data structures used in SCOTCH to represent fill-minimizing block
orderings of adjacency matrices represented as graphs. A block ordering, contained
in the Order data structure, is defined by an inverse permutation, which provides
the old indices of the reordered vertices, and a column block decomposition of
the reordered matrix, to help performing more efficient block computations at the
solving stage.

22

Inverse permutations are used, instead of direct permutations, because their pro-
cessing is more local: when ordering some subgraph, the only ordering information
to provide is the un-based start index, usually called ordenum, in the inverse per-
mutation vector, usually called peritab, while the vnumtax array of the Graph
structure holds the values of the vertex indices to write in the sub-array of peritab
starting at index ordenum, of a size equal to the number of concerned vertices in
the Graph. Once an ordering is computed, it is straightforward to compute the
direct permutation permtab from the inverse permutation peritab, in case it is
needed.

The column block decomposition is defined as a tree structure, whose nodes,
of type OrderCblk, represent column blocks containing consecutive, reordered
vertices. A tree node may have ordered children nodes, which represent the de-
composition of a column block into sub-column blocks, e.g., when a subdomain is
decomposed into two separated subdomains and a separator.

The main fields of the Order data structure are the following:

flagval
Flag that indicates whether the peritab inverse permutation array has to
be freed on exit.

baseval
Base value for inverse permutation values.

vnodnbr
Number of vertex nodes in the ordering. When the associated graph structure
is a Graph, this number is equal to its vertnbr field; when it is a Mesh, it
is equal to its vnodnbr field.

treenbr
Number of tree nodes in the ordering. This number is equal to 1 when only
the root tree node is present, and is incremented each time a new tree node
is added to the tree structure.

cblknbr
Number of column blocks in the ordering. This number is equal to 1 when
only the root tree node is present. When some column block is decomposed
into ¢ sub-column blocks, it is increased by (¢ — 1), since this represents the
number of additional column blocks in the structure.

rootdat
Root column block of the ordering. This structure, of type OrderCblk, is
initialized to contain all Graph vertices, or Mesh vertex nodes, in a single
column block, after which reordering algorithms are applied and lead to the
creation of sub-column blocks, e.g., in the case of nested dissection.

peritab
Pointer to the inverse permutation array.

mutedat
Mutual exclusion lock. When multi-threading is activated, it allows to create
critical sections to update the ordering data in a thread-safe manner.

23

6.6.1 OrderCblk

Column blocks are sets of reordered unknowns which are likely to be processed effi-
ciently together when solving the linear system, e.g., using BLAS block computation
routines. The column block decomposition of the reordered matrix is represented
as a tree whose nodes are instances of the OrderCblk data structure. The column
block decomposition tree will be used to create the block elimination tree of the
unknowns of the linear system, which amounts to linking each column block to a
father block. This building is performed by the orderTree () routine.

A column block tree node OrderCblk is defined by its type (i.e., whether it is
a leaf, a nested dissection node, etc.), its width (i.e., the number of node vertices
it contains), and, if it is not a leaf, the description of the sub-column blocks it
contains. The main fields of the OrderCblk data structure are the following:

typeval
Set of flags that define the nature of the column block tree node. They must
be the same as the distributed column block tree node flags of the Dorder
Cb1lk distributed column block data structure. Consequently, these flags must
be separate bits, so that values can be or-ed (especially, concerning ORDER
CBLKLEAF in hdgraphOrderNd ()). These flags are the following:

ORDERCBLKLEAF
Leaf column block (before it is subdivided into sub-column blocks, or
definitely). In this case, the other fields of the column block tree node
are such that cblknbr =0 and cblktab = NULL.

ORDERCBLKNEDT
Nested-dissection separator tree node. The separator is always the last
sub-column block. Hence, if the separator is not empty, the node has
three sub-column blocks (hence cblknbr = 3), while, if the separator
is empty, the column block tree node has only two sub-column blocks
(hence cblknbr = 2). None of the separated parts can be empty (else,
the tree node would be of type ORDERCBLKSEQU).

ORDERCBLKDICO

Disconnected components tree node. It contains an arbitrary number
(always strictly greater than 1) of sub-column blocks, which represent
disconnected components to be ordered independently. Since the sub-
column blocks are not connected, their father in the elimination tree will
not be the column block tree node itself, but its father (or none if the
column block is the root column block, i.e., the rootdat field of the
Order data structure).

ORDERCBLKSEQU
Sequential tree node. It contains an arbitrary number (always strictly
greater than 1) of sub-column blocks, which represent mutually depen-
dent blocks. Consequently, the father of each sub-column block in the
elimination tree will be the next sub-column block, except for the last
sub-column block, whose father will be the column block itself.

vnodnbr
Number of nodes (i.e., vertices) contained in the column block. If the column
block has sub-column blocks, the sum of all the vnodnbr values of the sub-
column blocks must be equal to the vnodnbr of the column block.

24

cblknbr
Number of sub-column blocks. If the column block is a leaf, cblknbr = 0
and cblktab = NULL.

cblktab
Array of cblknbr structures of type DorderCblk, which hold the data
about the sub-column blocks if the column block is not a leaf. cblktab has
to be freed on exit.

6.7 Hash tables

Hash tables are used quite often in SCOTCH. However, since their use is problem-
dependent, and the code that implements them is small, no generic data structure
has been created to handle them. Each instance is created ad hoc, at the expense
of a slight duplication of code. This provides better readability, as macros would
hide their meaning.

These hash tables use open addressing and linear lookup. Because of open ad-
dressing, removal of individual items is not possible, which is not a concern for our
use cases. Since linear lookup can prove very expensive when tables get full, im-
plementations in SCOTCH make sure that tables are not filled-in at more than 25%
capacity. Our experiments showed that this maximum load factor guarantees that
simple collisions happen in only about 1% of the cases, and that more-than-double
collisions are almost nonexistent. When the maximum number of items cannot be
known, resizing is implemented, to enforce this maximum load factor.

A typical use of these hash tables is to process the (common) neighbors of
several vertices. For instance, when coarsening a graph, the adjacencies of two
mated vertices have to be merged into a single adjacency, taking care of duplicate
edges. In this case, edge merging must be performed when one of the vertices is
connected to two neighbors that will be merged together, or when the two vertices
are connected to the same neighbor vertex or to two vertex neighbors to be merged
together. The edge connecting the two mated vertices must also be removed, if it
exists.

6.7.1 Data structure

The underlying data structure of a SCOTCH hash table is an array of a size which is
always a power of two. This constraint aims at providing cheap ways for array index
bounding, by turning expensive integer modulus operations into cheap bitwise ‘and’
operations using a dedicated bit mask variable.

In each use case, the semantics of cell data must allow one to indicate unambigu-
ously whether a cell is empty or full. Since hash indices are most often vertex or
edge indices, and these indices are always positive or null (i.e., baseval is always
positive or null), ‘—1’ is commonly used as a marker value in cell fields to indicate
an empty cell. To fill-in the hash table array at initialization time with ‘=1’ values
in one sweep, one can use a memset () routine with the >~ 0’ byte value (all 1’s),
assuming negative integer numbers are coded in two’s complement.

When a hash table is used repeatedly (e.g., for all vertices of a graph), re-
initializing the whole hash table memory area when only a few of its cells have been
touched may prove expensive. The solution is to embed in each cell a pass number
(e.g., the vertex number), so that a cell is considered empty when its pass number is
not equal to the number of the current pass. This is consistent with initializing the
table array with ‘—1’s, since pass numbers will always be greater than this value.

25

LS N

o o e w

Adding this extra field increases the size of each cell, hence of the whole array, but
reduces the overall number of memory writes while preserving cache locality.

For instance, in the case of graph coarsening discussed above, a hash table cell
may have the structure described below: vertnum is the pass number (i.e.,the
index of the current coarse vertex the adjacency of which is being built), vertend
is the hash index (the number of the coarse vertex neighbor for which an edge must
be maintained), and edgenum is the index of the edge to be created in the coarse
graph edge array.

typedef struct HashCell_ {
Gnum vertnum; /#+ Origin vertex (i.e. pass) number +%*/
Gnum vertend; /*+ Other end vertex number +x*/
Gnum edgenum; /#*+ Number of corresponding edge +#*/

} HashCell;

6.7.2 Operation

As said, the size of the hash table array must be a power-of-two size at least greater
than four times the expected maximum number of items, and its contents must be
initialized with ‘—1’ values. All of this can be performed with the following code.

itemmax = ...; /* Plausible maximum number of items */

for (hashmax = 2; hashmax > itemmax; hashmax *= 2) ; /# Find upper power
of two */

hashsiz = hashmax * 4; /x Array size guarantees 25% load factor #*/

hashmsk = hashsiz - 1; /# Bit mask is range of 1’s #*/

hashtab = (Hash *) memAlloc (hashsiz * sizeof (HashCell)); /* Allocate
hash table array */

memSet (hashtab, ~0, hashsiz % sizeof (HashCell)); /+ Fill-in array with

-1/ values */

In the above, hashtab is the pointer to the hash table array, itemmax is the
maximum number of items, hashmax is the maximum number of elements to be
inserted in the hash table, hashsiz is the size of the array (in number of cells), and
hashmsk is the bit mask for index bounding. In a real code, not all of these variables
are explicitly named and computed, because there exist simple relationships between
them. For instance, with respect to hashmsk, which is always present because it
must be easily available in hash loops, we have hashsiz = hashmsk 4+ 1 and
hashmax = (hashmsk — 3)/4. Multiplications and divisions by powers of two can
be cheaply performed by way of bit shift operators (i.e., ‘<<’ and ‘>>’). Hence,
hashmax = hashmsk >> 2, which also discards the unwanted low-order bits.

Once the hash table is set-up, it can be used efficiently with only a few lines
of code. To prevent data clustering in the array, the initial index is computed by
way of a multiplication by a number which is prime with the size (hence, an odd
number). For instance, from a vertex number vertnum: hashnum = vertnum X
HASHPRIME. Typically, the prime number is 17 or 31, that is, a number such
that multiplying by it amounts to a one-bit shift and an addition/subtraction only
(eg,uvx1T=v<<44vand v x3l=v<<5—v).

As said, lookup is linear: once a hash index hashnum is computed, if the
corresponding cell is already full, the next index will be computed by incre-
menting hashnum and performing a modulus operation using the bit mask, as
(hashnum + 1)%hashsiz = (hashnum+ 1)&hashmsk.

In the case of graph coarsening taken as an example, the hash table can be used
in the following way.

26

o

© o N o

10

11

12
13

14
15

16

17
18
19
20
21
22
23
24

for (coarvertnum = ...) { /% For each coarse vertex to consider */
for (finevertnum = ...) { /#* Enumerate fine vertices to merge in it x/
for (fineedgenum = fineverttax[finevertnum]; /# For all fine edges of
current fine vertex x/
fineedgenum < finevendtax[finevertnum]; fineedgenum ++) {
coarvertend = finecoartax[fineedgetax[fineedgenum]]; /* Get coarse
number of end fine vertex */

if (coarvertend != coarvertnum) { /* If not end of collapsed edge x/
for (hashnum = (coarvertend = HASHPRIME) & hashmsk; ;

hashnum = (hashnum + 1) & coarhashmsk) { /* For all possible

hash slots #*/
if (coarhashtab[hashnum].vertnum != coarvertnum) { /% If slot is
empty */

hashtab [hashnum] .vertnum = coarvertnum; /+ Create hash slot 1in
table */

hashtab[hashnum] .vertend = coarvertend;

hashtab [hashnum] .edgenum = ...; /x Set edge number in coarse
graph */

break; /* Give up hashing as it succeeded */

}

if (hashtab[hashnum].vertend == coarvertend) { /+ If coarse edge

already exists =/
/* Manage merging of fine edge in coarse one */

break; /+* Give up hashing as it succeeded #*/

}

}
}
} /* Go on searching for an empty cell +/
}
}

6.7.3 Resizing

When the number of items inserted in the table becomes greater than hashmax
(i.e., above the 25% load factor), resizing takes place. This may be a complex
procedure, depending on the semantics of the data types (e.g., when hash slot
indices are referenced in other data structures which must then also be updated).
However, the process is quite straightforward.

First, the size of the array is doubled, by way of a realloc () call, and the
second half of the enlarged array is initialized, by way of a memset (, “0,) call.
Then, cell locations must be updated, according to their new hash indices and the
linear lookup policy.

This process is performed in two phases. The first phase concerns the block of
all the non-empty cells contiguous to the end of the old hash table (i.e., the end of
the first half of the resized hash table). If the last cell of the old table is empty,
this last block does not exist. If it does, then all its cells are processed in ascending
order: their new hash index is computed and, if it differs from the current one, the
cell is moved to its new slot, possibly in the new half of the array. Then, in the
second phase, all the cells from the beginning of the array to the last cell before
those possibly processed in the first phase are processed similarly, also in ascending
order. Together, these two segments cover all the cells of the old hash table.

This two-phase approach is necessary to allow for moving all the cells of the hash
array without causing bugs. Assume the old hash table contains only two cells: a
first cell at the very end of the array, placed here because its hash index is indeed
the last index of the array, and a second cell at the very beginning of the array,
which was placed here because its hash index was also the index of the last cell but

27

10
11

12
13
14

16
17
18
19
20
21
22
23

24
25

has been subsequently set to zero in the lookup phase since the last cell was already
full. If only the second phase would take place, the first cell of the array would
have its index recomputed first, and may still be the end of the first half of the new
array, but, since this slot is still busy, the cell would be moved just after it, that is,
now that the table is resized, at the very beginning of the second half of the resized
array, which is empty. Then, the last cell would have its index recomputed and, if
its new index would differ from its former one, because of the different modulus, it
would be moved elsewhere. Hence, the first cell would no longer be accessible.

These two phases can be combined into the same factored code, by way of the
outer loop exemplified below.

hashtab = memRealloc (hashtab, 2 * hashold x sizeof (HashCell)); /=*
Resize hash table x/

memSet (hashtab + hashold, ~0, hashold x sizeof (HashCell)); /=*
Initialize second half x/

for (hashbas = hashold - 1; hashtab[hashbas].vertnum == vertnum; hashbas
--) ; /* Find start index of last block =/

hashnnd = hashold; /% First segment to reconsider ends at the end of the
old array #*/

while (hashnnd != hashbas) { /* For each of the two segments to consider
*/
for (hashnum = hashbas; hashnum < hashnnd; hashnum ++) { /x Re-compute
position in new table #*/
if (hashtab[hashnum].vertnum == vertnum) { /* If hash slot used in
this pass */
vertend = hashtab[hashnum].vertend; /* Get hash key value #*/

for (hashnew = (vertend » HASHPRIME) & hashmsk; ; hashnew = (hashnew
+ 1) & hashmsk) {
if (hashnew == hashnum) /#* If hash slot is the same x/
break; /* There is nothing to do */
if (hashtabl[hashnew].vertnum != vertnum) { /+* If new slot is empty
*/
hashtab[hashnew] = hashtabl[hashnum]; /#* Copy data to new slot #*/
hashtab[hashnum] .vertnum = ~0; /# Mark old slot as empty #*/
break;

}
} /* Go on searching */

}

hashnnd = hashbas; /* End of second segment to consider is start of
first one %/
hashbas = 0; /#* Start of second segment is beginning of array #*/
} /+ After second segment, hashbas = hashnnd = 0 and loop stops #*/

In the above, hashold is the size of the old hash table, hashbas is the start
index of the current segment, and hashnnd is the end index of the current segment.
For the first segment, the loop always starts on an empty cell; this allows one to
handle smoothly the case when there is no last block. Since there always exists at
least one empty cell in the array, because of the load factor, the loop on the first
segment will never start off the bounds of the array. Like before, the vertnum field
of hash cells is the current pass number, acting as an occupation flag, and vertend,
the hash key value of the cell, is used to compute the new hash index. The emptiness
test “if (hashtab[hashnew].vertnum != vertnum)”’
“if (hashtab[hashnew].vertnum == 7~0)”, since the two cases in which an
empty cell is found consist in the new hash value indexing either the new part of
the hash table, or a cell that has been cleared after moving. In both cases, the value

can also be written:

28

of the pass number has been explicitly set to ‘7 0’.
Depending on the use case, in each concerned SCOTCH routine, relevant variables
and fields may have different names and semantics.

7 Code explanations

This section explains some of the most complex algorithms implemented in SCOTCH
and PT-ScoTcH.

7.1 dgraphCoarsenBuild ()

The dgraphCoarsenBuild () routine creates a coarse distributed graph from a
fine distributed graph, using the result of a distributed matching. The result of the
matching is available on all MPI processes as follows:

coardat.multlocnbr
The number of local coarse vertices to be created.

coardat.multloctab

The local multinode array. For each local coarse vertex to be created, it
contains two values. The first one is always positive, and represents the global
number of the first local fine vertex to be mated. The second number can be
either positive or negative. If it is positive, it represents the global number of
the second local fine vertex to be mated. If it is negative, its opposite, minus
two, represents the local edge number pointing to the remote vertex to be
mated.

coardat.procgsttax
Array (restricted to ghost vertices only) that records on which process is
located each ghost fine vertex.

7.1.1 Creating the fine-to-coarse vertex array

In order to build the coarse graph, one should create the array that provides the
coarse global vertex number for all fine vertex ends (local and ghost). This infor-
mation will be stored in the coardat.coargsttax array.

Hence, a loop on local multinode data fills coardat.coargsttax. The first
local multinode vertex index is always local, by nature of the matching algorithm.
If the second vertex is local too, coardat.coargsttax is filled instantly. Else,
a request for the global coarse vertex number of the remote vertex is forged, in
the vsnddattab array, indexed by the current index coarsndidx extracted from
the neighbor process send index table nsndidxtab. Each request comprises two
numbers: the global fine number of the remote vertex for which the coarse number
is seeked, and the global number of the coarse multinode vertex into which it will
be merged.

Then, an all-to-all-v data exchange by communication takes place, using either
the dgraphCoarsenBuildPtop () or dgraphCoarsenBuildColl () routines.
Apart from the type of communication they implement (either point-to-point or
collective), these routines do the same task: they process the pairs of values sent
from the vsnddattab array. For each pair (the order of processing is irrelevant),
the coargsttax array of the receiving process is filled-in with the global multinode
value of the remotely mated vertex. Hence, at the end of this phase, all processes

29

have a fully valid local part of the coargsttax array; no value should remain
negative (as set by default). Also, the nrcvidxtab array is filled, for each neighbor
process, of the number of data it has sent. This number is preserved, as it will serve
to determine the number of adjacency data to be sent back to each neighbor process.

Then, data arrays for sending edge adjacency are filled-in. The ercvdsptab
and ercvcnttab arrays, of size procglbnbr, are computed according to the
data stored in coardat.dcntglbtab, regarding the number of vertex- and edge-
related data to exchange.

By way of a call to dgraphHaloSync (), the ghost data of the coargsttax
array are exchanged.

Then, edgelocnbr, an upper bound on the number of local edges, as well as
ercvdatsiz and esnddatsiz, the edge receive and send array sizes, respectively.

Then, all data arrays for the coarse graph are allocated, plus the main adjacency
send array esnddsptab, its receive counterpart ercvdattab, and the index send
arrays esnddsptab and esndcnttalb, among others.

Then, adjacency send arrays are filled-in. This is done by performing a loop on
all processes, within which only neighbor processes are actually considered, while
index data in esnddsptab and esndcnttab is set to 0 for non-neighbor processes.
For each neighbor process, and for each vertex local which was remotely mated by
this neighbor process, the vertex degree is written in the esnddsptab array, plus
optionally its load, plus the edge data for each of its neighbor vertices: the coarse
number of its end, obtained through the coargsttax array, plus optionally the
edge load. At this stage, two edges linking to the same coarse multinode will not be
merged together, because this would have required a hash table on the send side.
The actual merging will be performed once, on the receive side, in the next stage
of the algorithm.

7.2 dgraphFold() and dgraphFoldDup ()

The dgraphFold () routine creates a “folded” distributed graph from the input
distributed graph. The folded graph is such that it spans across only one half of the
processing elements of the initial graph (either the first half, or the second half).
The purpose of this folding operation is to preserve a minimum average number of
vertices per processing element, so that communication cost is not dominated by
message start-up time. In case of an odd number of input processing elements, the
first half of them is always bigger that the second.

The dgraphFoldDup () routine creates two folded graphs: one for each half.
Hence, each processing element hosting the initial graph will always participate in
hosting a new graph, which will depend on the rank of the processing element.
When the MPI implementation supports multi-threading, and multi-threading is
activated in SCOTCH, both folded graphs are created concurrently.

The folding routines are based on the computation of a set of (supposedly effi-
cient) point-to-point communications between the sender processes, which will not
retain any graph data, and the receiver processes, which will host the folded graph.
However, in case of unbalanced vertex distributions, overloaded receiver processes
(called sender receiver processes) may also have to send their extra vertices to
underloaded receiver processes. A receiver process may receive several chunks of
vertex data (including their adjacency) from several sender processes. Hence, fold-
ing amounts to a redistribution of vertex indices across all receiver processes. In
particular, end vertex indices have to be renumbered according to the global order
in which the chunks of data are exchanged. This is why the computation of these ex-

30

changes, by way of the dgraphFoldComm () routine, has to be fully deterministic
and reproducible across all processing elements, to yield consistent communication
data. The result of this computation is a list of point-to-point communications
(either all sends or receives) to be performed by the calling process, and an array
of sorted global vertex indices, associated with vertex index adjustment values, to
convert global vertex indices in the adjacency of the initial graph into global vertex
indices in the adjacency of the folded graph. This array can be used, by way of
dichotomy search, to find the proper adjustment value for any end vertex number.

To date, the dgraphRedist () routine is not based on a set of point-to-point
communications, but collectives. It could well be redesigned to re-use the mecha-
nisms implemented here, with relevant code factorization.

7.2.1 dgraphFoldComm ()

The dgraphFoldComm () routine is at the heart of the folding operation. It com-
putes the sets of point-to-point communications required to move vertices from the
sending half of processing elements to the receiving half, trying to balance the folded
graph as much as possible in terms of number of vertices. For receiver processes, it
also computes the data needed for the renumbering of the adjacency arrays of the
graph chunks received from sender (or sender receiver) processes.

It is to be noted that the end user and the SCOTCH algorithms may have diver-
gent objectives regarding balancing: in the case of a weighted graph representing
a computation, where some vertices bear a higher load than others, the user may
want to balance the load of its computations, even if it results in some processing
elements having less vertices than others, provided the sums of the loads of these
vertices are balanced across processing elements. On the opposite, the algorithms
implemented in SCOTCH operate on the vertices themselves, irrespective of the load
values that is attached to them (save for taking them into account for computing
balanced partitions). Hence, what matters to SCOTCH is that the number of ver-
tices is balanced across processing elements. Whenever SCOTCH is provided with
an unbalanced graph, it will try to rebalance it in subsequent computations (e.g.,
folding). However, the bulk of the work, on the initial graph, will be unbalanced
according to the user’s distribution.

During a folding onto one half of the processing elements, the processing elements
of the other half will be pure senders, that need to dispose of all of their vertices
and adjacency. Processing elements of the first half will likely be receivers, that
will take care of the vertices sent to them by processing elements of the other half.
However, when a processing element in the first half is overloaded, it may behave
as a sender rather than a receiver, to dispose of its extra vertices and send it to an
underloaded peer.

The essential data that is produced by the dgraphFoldComm () routine for the
calling processing element is the following;:

commmax
The maximum number of point-to-point communications that can be per-
formed by any processing element. The higher this value, the higher the
probability to spread the load of a highly overloaded processing element to
(underloaded) receivers. In the extreme case where all the vertices are lo-
cated on a single processing element, (procglbnbr — 1) communications
would be necessary. To prevent such a situation, the number of communi-
cations is bounded by a small number, and receiver processing elements can
be overloaded by an incoming communication. The algorithm strives to pro-

31

vide a feasible communication scheme, where the current maximum number of
communications per processing element suffices to send the load of all sender
processing elements. When the number of receivers is smaller than the num-
ber of senders (in practice, only by one, in case of folding from an odd number
of processing elements), at least two communications have to take place on
some receiver, to absorb the vertices sent. The initial maximum number of
communications is defined by DGRAPHFOLDCOMMNBR;

commtypval
The type of communication and processing that the processing element will
have to perform: either as a sender, a receiver, or a sender receiver. Sender
receivers will keep some of their vertex data, but have to send the rest to
other receivers. Sender receivers do send operations only, and never receive
data from a sender;

commdattab
A set of slots, of type DgraphFoldCommData, that describe the point-to-
point communications that the processing element will initiate on its side.
Each slot contains the number of vertices to send or receive, and the target
or source process index, respectively;

commvrttab
A set of values associated to each slot in commdattab, each of which contains
the global index number of the first vertex of the graph chunk that will be
transmitted;

proccnttab
For receiver processes only, the count array of same name of the folded dis-
tributed graph structure;

vertadijnbr
For receiver processes only, the number of elements in the dichotomy array
vertadijtab;

vertadijtab
A sorted array of global vertex indices. Each value represent the global start
index of a graph chunk that will been exchanged (or which will remain in
place on a receiver processing element);

vertdlttab

The value which has to be added to the indices of the vertices in the corre-
sponding chunk represented in vertadjtab. This array and the latter serve
to find, by dichotomy, to which chunk an end vertex belongs, and modify its
global vertex index in the edge array in the receiver processing element. Al-
though vertadjtab and vertdlttab contain strongly related information,
they are separate arrays, for the sake of memory locality. Indeed, vertad
tab will be subject to a dichotomy search, involving many memory reads,
before the proper index is found and a single value is retrieved from the vert
dlttab array.

The first stage of the algorithm consists in sorting a global process load array in
ascending order, in two parts: the sending half, and the receiving half. These two
sorted arrays will contain the source information which the redistribution algorithm
will use. Because the receiver part of the sort array can be modified by the algo-
rithm, it is recomputed whenever commmax is incremented. It is the same for sort

32

sndbas, the index of the first non-empty sender in the sort array.

In a second stage, the algorithm will try to compute a valid communication
scheme for vertex redistribution, using as many as commmax communications (ei-
ther sends or receives) per processing element. During this outermost loop, if a
valid communication scheme cannot be created, then commmax is incremented and
the communication scheme creation algorithm is restarted. The initial value for
commmax is DGRAPHFOLDCOMMNBR.

The construction of a valid communication scheme is performed within an in-
termediate loop. At each step, a candidate sender process is searched for: either a
sender process which has to dispose of all of its vertices, or an overloaded receiver
process, depending on which has the biggest number of vertices to send. If can-
didate senders can no longer be found, the stage has succeeded with the current
value of commmax; if a candidate sender has been found but a candidate receiver
has not, the outermost loop is restarted with an incremented commmax value, so as
to balance loads better.

Every time a sender has been found and one or more candidate receivers exist,
an inner loop creates as many point-to-point communications as to spread the
vertices in chunks, across one or more available receivers, depending on their
capacity (i.e., the number of vertices they can accept). If the selected sender
is a sender receiver, the inner loop will try to interleave small communications
from pure senders with communications of vertex chunks from the selected sender
receiver. The purpose of this interleaving is to reduce the number of messages
per process: a big message from a sender receiver is likely to span across several
receivers, which will then perform only a single receive communication. By
interleaving a small communication on each of the receivers involved, the latter
will only have to perform one more communication (i.e., two communications
only), and the interleaved small senders will be removed off the list, reducing the
probability that afterwards many small messages will sent to the same (possibly
eventually underloaded) receiver.

In a third stage, all the data related to chunk exchange, which was recorded in
a temporary form in the vertadjtab, vertdlttab and slotsndtab arrays,
is compacted to remove empty slots and to form the final vertadjtab and
vertdlttab arrays to be used for dichotomy search.

The data structures that are used during the computation of vertex global index
update arrays are the following:

vertadijtab and vertdlttab
These two arrays have been presented above. They are created only for re-
ceiver processes, and will be filled concurrently. They are of size ((commmax+
1) x orgprocnbr), because in case a process is a sender receiver, it has to
use a first slot to record the vertices it will keep locally, plus commmax for
outbound communications. During the second stage of the algorithm, for
some slot i, vertadjtab[i] holds the start global index of the chunk of
vertices that will be kept, sent or received, and vertdlttab[i] holds the
number of vertices that will be sent or received. During the third stage of the
algorithm, all this data will be compacted, to remove empty slots. After this,
vertadijtab will be an array of global indices used for dichotomy search in
dgraphFold (), and vertdlttab[i] will hold the adjustment value to ap-
ply to vertices whose global indices are comprised between vertadjtab[1i]

33

© 0 N o oA W N R

S
w N = O

© 0 N o oA W N R

S
w N = O

and vertadjtab[i+1].

slotsndtab
This array only has cells for receiver-slide slots, hence a size of ((commmax +
1) * procfldnbr) items. During the second stage of the algorithm, it is
filled so that, for any non-empty communication slot i in vertadjtab and
vertdlttab, representing a receive operation, slotsndtab[1i] is the slot
index of the corresponding send operation. During the third stage of the algo-
rithm, it is used to compute the accumulated vertex indices across processes.

Here are some examples of redistributions that are computed by the dgraph
FoldComm () routine.

orgvertcnttab = { 20, 20, 20, 20, 20, 20, 20, 1908 }
partval =1
vertglbmax = 1908

Proc [0] (SND) 20 -> 0 : { [4] <= 20 }

Proc [1] (SND) 20 -> 0 : { [5] <= 20 }

Proc [2] (SND) 20 -> 0 : { [6] <= 20 }

Proc [3] (SND) 20 -> 0 : { [6] <—- 20 }

Proc [4] (RCV) 20 -> 512 : { [0] -> 20 }, { [7] -> 472 }

Proc [5] (RCV) 20 -> 512 : { [1] -> 20 }, { [7] —-> 472 }

Proc [6] (RCV) 20 -> 512 : { [2] -> 20 }, { [7] —-> 452 }, { [3] -> 20 }
Proc [7] (RSD) 1908 -> 512 : { [4] <- 472 }, { [5] <= 472 1}, { [6] <—- 452 }
commmax = 4

commsum = 14

We can see in the listing above that some interleaving took place on the first receiver
(proc. 4) before the sender receiver (proc. 7) did its first communication towards it.

orgvertcnttab = { 0, 0, 0, 20, 40, 40, 40, 100 }
partval =1

vertglbmax = 100

Proc [0] (SND) O -> 0 :

Proc [1] (SND) 0 -> O :

Proc [2] (SND) 0 -> 0 :

Proc [3] (SND) 20 -> 0 : { [4] <- 20 }

Proc [4] (RCV) 40 -> 60 : { [3] -> 20 }

Proc [5] (RCV) 40 -> 60 : { [7] —-> 20 }

Proc [6] (RCV) 40 -> 60 : { [7] —-> 20 }

Proc [7] (RSD) 100 -> 60 : { [5] <= 20 }, { [6] <= 20 }
commmax = 4

commsum = 6

In the latter case, one can see that the pure sender that has been interleaved (proc. 3)
sufficed to fill-in the first receiver (proc. 4), so the first communication of the sender
receiver (proc. 7) was towards the next receiver (proc. 5).

7.3 dmeshDgraphDual ()

The dmeshDgraphDual () routine creates a dual distributed graph of type
Dgraph from a distributed mesh of type Dmesh. It can be seen as the distributed-
memory version of the meshGraphDual () routine. An edge will be created be-
tween two elements only if these elements have at least noconbr nodes in common.

At the time being, the Dmesh data structure only stores the adjacency from
local element vertices to node vertices, using their global, based, numbering. Con-
sequently, building the element-to-element connectivity operates in three phases:
firstly, to redistribute element-to-node edge information so as to build the node-to-
element adjacency of each node; secondly, to provide relevant node adjacencies to

34

processes requiring them (possibly duplicating the same adjacency on multiple pro-
cesses); this will allow, in a third phase, to build the element-to-element adjacency
of each local element.

7.3.1 Determining the node vertex range

In a preliminary sweep over every local element-to-node edge array, the local maxi-
mum global node index vnodlocmax is computed. Then, by way of an all-reduce-
max operation, the global maximum global node index vnodglbmax is obtained.
If the node global indices are all used, then the global number of vertex nodes,
vnodglbnbr, is equal to vhodglbmax —baseval + 1, as valid node vertex global
indices range from baseval to vnodglbmax, included.

In debug mode, the local minimum global node index vnodlocmin is also com-
puted, and all-reduced-min into vnodglbmin, which should be equal to baseval.

Knowing the global node vertex index range is necessary to evenly distribute
node vertex data across all processes, assuming node vertices will have an equivalent
number of neighbors overall. The absence of some node vertex indices in this range
will not break the algorithm (isolated node vertices will be created in the first phase,
which will not be propagated anywhere in the second phase), but may cause load
imbalance when handling the node vertices on each process.

7.3.2 Creating node adjacencies

In order to build node vertex adjacencies across all processes, some all-to-all com-
munication must take place, in order to send element-to-node edge data to the pro-
cesses that will host the given node vertices, turning the gathered data into node-to-
element data. All-to-all communication of edges will be controlled by four arrays of
int’s, of size procglbnbr each: esndcnttab, the edge send count array; esnd
dsptab, the edge send displacement array; ercvcnttab, the edge receive count
array; and ercvdsptab, the edge receive displacement array. The edge data to be
sent will be placed into esnddattab, the edge send data array, while the received
edge data will be available in ercvdattab, the edge receive data array.

In order to determine how many edges have to be sent to each process,
per-process singly linked lists are built, by way of two arrays: prfrloctab
(“(per-)process first (index), local array”), of size procglbnbr since there must be
as many lists as there are destination processes, and eeneloctax (“element edge
next (index), local based array”), of size (2 * eelmlocnbr) since each of the local
element-to-node edges has to be chained to (only) one list, to be sent to the relevant
process, and each chaining will require two data: the global element number (which
could not be retrieved in O(1) time else), and the edge index of the next edge in
the chaining (which will be the sentinel value -1 at the end of the list).

All the cells of prfrloctab are initialized with —1, the end-of-list sentinel, and
all cells of esndcnttab are initialized to 0, as this array will be used to count the
number of edges to send to each process.

Then, the adjacencies of all local element vertices are traversed. For each
element-to-node edge of index e, the index p of the process which will holds the
node vertex is computed in O(1) time, using the dmeshDgraphDualProcNum ()
routine. The edge data is then chained at the head of the linked list for this pro-
cess: prfrloctab[p] stores the index of the edge, while eeneloctax[2 * €]
stores the element global index, and eeneloctax[2*xe+ 1] receives the old value
of prfrloctab[p], to maintain the forward chaining. Also, esndloctab [p] is

35

increased by 2, since two more data will be sent to p in the upcoming all-to-all
exchange.

Then, the contents of esndcnttab are all-to-all exchanged to fill-in ercvent
tab, which indicates the amount of edge data to be received from each process;
the sum of its cells gives ercvdatsiz, which amounts to twice the number of
local node-to-element edges to be created. The vnodloctax and enodloctax
arrays can then be allocated, to hold the node vertex indices and edge adjacency,
respectively. Then, from esndcnttab and ercventtab are derived the displace-
ment arrays esnddsptab and ercvdsptab, respectively. Then, the esnddat
tab and ercvdattab temporary arrays can be allocated, after those that will
remain in memory longer.

Then, the per-process linked lists are traversed, and the element-to-node edge
data, now turned into node-to-element edge data, is copied into the esnddattab
array, after which an all-to-allv data exchange makes it available in the ercvdat
tab array of each process.

Then, the received edge array is traversed, to count in vnodloctax the number
of edges per node vertex. Once this counting is done, the vnodloctax is turned
into a displacement array, which will be used to place node-to-element edges at their
proper place in enodloctax. After this, the the received edge array is traversed
again to record the node-to-element edges in enodloctax, and the contents of
vnodloctax are restored.

7.3.3 Making node adjacencies available to concerned elements

To create element-to-element adjacencies from element-to-node adjacencies, the
node-to-element adjacencies of all nodes used as neighbors of some element vertex
have to be copied to the process owning this element vertex. Hence, the same node
adjacency may have to be sent to several processes at the same time. In order to de-
termine to which process the adjacency of some node vertex has to be sent, one can
take advantage of the order in which edge data have been received in the ercvdat
tab array: the adjacency of a node has to be sent to some process p if the global node
index of this node vertex appears in the sub-array of ercvdattab starting from
index ercvdsptab[p] and ending before index ercvdsptab[p + 1] (or ercv
datsiz for the last sub-array). However, a node vertex adjacency needs only be
sent once to any process, even if more than one of its local elements need it. To do
so, a local node vertex flag array, vnflloctax, of size vhodlocnbr, will contain
the most recent process number requesting the node vertex. Hence, a node vertex
adjacency will only be copied once to the node adjacency send data array for this
process. All cells of the flag array are initially set to —1, an invalid process number.
In a first pass across the ercvdattab array, the number of node data to be
sent to each process is computed, and stored in the relevant cell of the nsndcent
tab (“node (data) send count”) array. For each concerned node vertex, the number
of data items to be sent is equal to two (the global number of the node, and its
degree), plus the number of element neighbors of the node vertex. A node vertex v
will be accounted for, for a given process p, only if vnflloctax[v] < p, and once
the node vertex is accounted for, it is flagged by setting vnflloctax[v] to p.
Then, the contents of the nsndcnttab array are all-to-all exchanged, to pro-
duce the nrcventtab array. From these two can be derived the nsnddsptab
and nrcvdsptab send and receive displacement arrays, respectively, and nsnd
datsiz and nrcvdatsiz, the overall number of data to be sent and received, re-
spectively. The two node data send and receive arrays, nsnddattab and nrcvdat

36

tab, can be allocated with these prescribed sizes. The send array will be allocated
last, since it will be freed first, as soon as the data exchange completes.

In a second pass across the ercvdattab array, the adjacencies of the nodes
that are encountered for the first time in this pass are copied to the nsnddat
tab array, one process after the other, using the start indices contained in the nsnd
dsptab array. In order not to have to reset the flag array between the two passes, a
node vertex v will be accounted for, for a given process p, only if vhflloctax [v] <
(procglbnbr+p), and once the node vertex is accounted for, it is flagged by setting
vnflloctax[v] to (procglbnbr + p).

Then, an all-to-allv data exchange makes the node adjacency data available in
the nrcvdattab array of each process.

It is now necessary to make node adjacency available in O(1) time. This is
made possible through a hash table hnodtab of type DmeshDgraphDualHash
Node, which, for each concerned node vertex, will point to the start of this node
data (that is, the node degree and node-to-element adjacency) in the nrcvdat
tab array. Since this hash table will be static (that is, read-only and of immutable
size) and must contain all the local nodes, its maximum load capacity is set to 50 %
(and not 25 % as usually done in SCOTCH degree-related hash tables). Once this
hash table array is allocated, the nrcvdattab is traversed to populate it.

7.3.4 Creating the element-to-element adjacencies

The last phase of the algorithm is the building of element-to-element adjacencies.
This is performed through a second hash table, helmtab, of type DmeshDgraph
DualHashEdge. Since the maximum degree of element-to-element adjacencies
cannot be known in advance, this hash table may be resized dynamically, and will
be loaded at 25 % capacity to minimize collisions. Its functioning, including resizing,
is described in Section 6.7 of this manual.

The local distributed adjacency data for the dual graph will be placed into the
vertloctax and edgeloctax arrays. Hence, prior to building the element-to-
element adjacency, these arrays are allocated. Since the distributed graph will be
compact, vertloctax is of size (velmlocnbr + 1). Since the number of edges
cannot be estimated in advance, the size of the edgeloctax array, starting from a
plausible size, may have to be dynamically increased during its filling-in, each time
by 25 % more.

For each local element, the preexisting element-to-node adjacency is traversed
and, for each of the neighbor nodes, the node-to-element adjacency is traversed in
turn, being read from nrcvdattab from the index provided by hnodtab.

If the neighbor element is not yet present in helmtab for the current local
element, it is added to the element hash table, with a neighbor count in the hash
table equal to (noconbr—1), since one common node has already been found. If the
neighbor element is already present in helmtab for the current local element, and
its neighbor count in the hash table is strictly greater than zero, the neighbor count
is decremented. If, in any of the two above cases, the neighbor count reaches zero,
the neighbor element is added to the adjacency list of the current element in edge
loctax; this latter array is enlarged whenever full. It will be downsized to its exact
final size once all the edges have been created.

Once the vertloctax and edgeloctax arrays are complete, the
dgraphBuild?2 () routine is called, to finalize the construction of the distributed
dual graph.

37

8 Procedures for new developments and release

8.1 Adding methods to the libScotch library

The LIBSCOTCH has been carefully designed to allow external contributors to add
their new partitioning or ordering methods, and to use SCOTCH as a testbed for
them.

8.1.1 What to add
There are currently seven types of methods which can be added:
e k-way graph mapping methods, in module kgraph;

e graph bipartitioning methods by means of edge separators, in module bgraph,
used by the mapping method by dual recursive bipartitioning, implemented
in kgraphmap_rb. [ch];

e graph ordering methods, in module hgraph;

e graph separation methods by means of vertex separators, in module vgraph,
used by the nested dissection ordering method implemented in hgraph_
order_nd. [ch];

e mesh ordering methods, in module hmesh;

e mesh separation methods with vertex separators, in module vmesh, used
by the nested dissection ordering method implemented in hmesh_order_
nd. [ch];

e graph partitioning methods with separator overlap, in module wgraph.

Every method of these seven types operates on instances of augmented graph struc-
tures that contain, in addition to the graph topology, data related to the current
state of the partition or of the ordering. For instance, all of the graph bipartition-
ing methods operate on an instance of a Bgraph, defined in bgraph . h, and which
contains fields such as compload0, the current load sum of the vertices assigned
to the first part, commload, the load sum of the cut edges, etc.

In order to understand better the meaning of each of the fields used by some aug-
mented graph or mesh structure, contributors can read the code of the consistency
checking routines, located in files ending in _.check.c , such as bgraph_check.c
for a Bgraph structure. These routines are regularly called during the execution of
the debug version of SCOTCH to ease bug tracking. They are time-consuming but
proved very helpful in the development and testing of new methods.

8.1.2 Where to add

Let us assume that you want to code a new graph separation routine. Your routine
will operate on a Vgraph structure, and thus will be stored in files called vgraph_
separate_ xy.[ch], where xy is a two-letter reminder of the name of your al-
gorithm. Look into the LIBSCOTCH source directory for already used codenames,
and pick a free one. In case you have more that one single source file, use extended
names, such as vgraph_separate_xy_subname. [ch]

In order to ease your coding, copy the files of a simple and already existing
method and use them as a pattern for the interface of your new method. Some

38

methods have an optional parameter data structure, others do not. Browse through
all existing methods to find the one that looks closest to what you want.

Some methods can be passed parameters at run time from the strategy string
parser. These parameters can be of fixed types only. These types are:

e an integer (int) type,
e a floating-point (double) type,

e an enumerated (char) type: this type is used to make a choice among a list of
single character values, such as “yn”. It is more readable than giving integer
numerical values to method option flags,

e a strategy (SCOTCH Strat type): a method can be passed a sub-strategy of
a given type, which can be run on an augmented graph of the proper type.
For instance, the nested dissection method in hgraph_order_nd.c uses a
graph separation strategy to compute its vertex separators.

8.1.3 Declaring the new method to the parser

Once the new method has been coded, its interface must be known to the parser,
so that it can be used in strategy strings. All of this is done in the module strat-
egy method files, the name of which always end in _st. [ch], that is, vgraph_
separate_st. [ch] for the vgraph module. Both files are to be updated.

In the header file *_st.h, a new identifier must be created for the new method in
the StMethodType enumeration type, preferrably placed in alphabetical order.

In file *_st.c, there are several places to update. First, in the beginning of the
module file, the header file of the new method, vgraph_separate_xy.h in this
example, must be added in alphabetical order to the list of included method header
files.

Then, if the new method has parameters, an instance of the method parameter
structure must be created, which will hold the default values for the method. This
is in fact a union structure, of the following form:

static union {

VgraphSeparateXyParam param;
StratNodeMethodData padding;
} vgraphseparatedefaultxy = { { ... } };

where the dots should be replaced by the list of default values of the fields of
the VgraphSeparateXyParam structure. Note that the size of the StratNode
MethodData structure, which is used as a generic padding structure, must always
be greater than or equal to the size of each of the parameter structures. If your
new parameter structure is larger, you will have to update the size of the Strat
NodeMethodData type in file parser.h . The size of the StratNodeMethod
Data type does not depend directly on the size of the parameter structures (as
could have been done by making it an union of all of them) so as to to reduce
the dependencies between the files of the library. In most cases, the default size is
sufficient, and a test is added in the beginning of all method routines to ensure it
is the case in practice.

Finally, the first two method tables must be filled accordingly. In the first one,
of type StratMethodTab, one must add a new line linking the method identifier
to the character code used to name the method in strategy strings (which must
be chosen among all of the yet unused letters), the pointer to the routine, and the

39

pointer to the above default parameter structure if it exists (else, a NULL pointer
must be provided). In the second one, of type StratParamTab, one must add
one line per method parameter, giving the identifier of the method, the type of
the parameter, the name of the parameter in the strategy string, the base address
of the default parameter structure, the actual address of the field in the parameter
structure (both fields are required because the relative offset of the field with respect
to the starting address of the structure cannot be computed at compile-time), and
an optional pointer that references either the strategy table to be used to parse the
strategy parameter (for strategy parameters) or a string holding all of the values of
the character flags (for an enumerated type), this pointer being set to NULL for all
of the other parameter types (integer and floating point).

8.1.4 Adding the new method to the Make compilation environment

In order to be compiled with the MAKE environment, the new method must files
be added to the Makefile of the src/libscotch source directory. There are
several places to update.

First, you have to create the entry for the new method source files themselves.
The best way to proceed is to search for the one of an already existing method, such
as vgraph_separate_fm, and copy it to the right neighboring place, preferrably
following the alphabetical order.

Then, you have to add the new header file to the dependency list of the module
strategy method, that is, vgraph_separate_st for graph separation methods.
Here again, search for the occurences of string vgraph_separate_fm to see where
it is done.

Finally, add the new object file to the component list of the 1ibscotch library
file.

8.1.5 Adding the new method to the CMake compilation environment

In order to be compiled with the MAKE environment, the new method files must
be added to the CMakeLists.txt of the src/libscotch source directory.

Once all of the above is done, you can recompile SCOTCH and be able to use
your new method in strategy strings.

8.2 Adding routines to the public API

The public API of SCOTCH exposes a set of routines which can be called by user
programs. These public symbols are subject to specific procedures, in particular to
rename them according to the users’ needs.

e Implement the C interface of the routine in a src/libscotch/
library_*.c source file. This source file must include src/libscotch/
module.h , so that function renaming can take place whenever necessary;

e Whether appropriate, implement the Fortran interface of the routine within
a src/libscotch/library_»_f.c source file. The routines in this file
will call the former ones. This source file must include src/libscotch/
module.h as well, so that function renaming can take place whenever neces-
sary;

40

1

e Create a SCOTCH.NAME_PUBLIC macro in src/libscotch/module.h |, so
that function renaming can take place, for instance when symbols have to be
suffixed;

e Create the relevant manual pages in the SCOTCH or PT-SCOTCH user’s man-
ual.

8.3 Release procedure

This section describes the procedure for releasing a new version of SCOTCH on the
Inria GitLab repository: https://gitlab.inria.fr/scotch/scotch . All
commands are relative to the “. /src” directory of the SCOTCH distribution.

8.3.1 Removal of debugging flags

Verification of the absence of level-3 debugging flags (such definitions should contain
the keyword “BROL” in the associated comment, as an alternate search keyword):

grep 'DEBUG_.\+3’ xc | grep define

8.3.2 Symbol renaming

After compiling with “SCOTCH_RENAME”, verification of the absence of unprotected
names:

make scotch ptscotch esmumps ptesmumps

nm ../lib/libscotch.a | grep -v —-e SCOTCH -e ESMUMPS -e " b " -e " d " -e "
t " -e " U" -e "scotchf" -e "fprintf" -e "fscanf" -e "malloc" -e "
realloc" -e "free" -e "memset" -e "random" -e "get_pc_thunk." -e " r .
LC" | (sed -z ’"s/\n/#/g’ ; echo -n "#’) | sed ’"s/[a-zA-Z0-9_]\+[.]o
[:1#%#//g" | sed "s/#/\n/g’ > /tmp/brol.txt

nm ../lib/libptscotch.a | grep -v —-e SCOTCH -e ESMUMPS -e " b " —-e " d " -e
"t " -e " U" -e "scotchf" -e "fprintf" -e "fscanf" -e "malloc" -e "
realloc" -e "free" -e "memset" -e "random" -e "get_pc_thunk." -e " r .
LC" | (sed -z 's/\n/#/g’ ; echo -n "#’) | sed ’"s/[a-zA-20-9_]\+[.]o
[:1#%#//g" | sed "s/#/\n/g’ >> /tmp/brol.txt

nm ../lib/libesmumps.a | grep -v —e SCOTCH -e ESMUMPS -e " b " -e " d " -e
"t " -e " U" -e "scotchf" -e "fprintf" -e "fscanf" -e "malloc" -e "
realloc" -e "free" -e "memset" -e "random" -e "get_pc_thunk." -e " r .
LC" | (sed -z 's/\n/#/g’ ; echo -n "#’) | sed ’'s/[a-zA-20-9_]\+[.]o
[:1#%#//g" | sed "s/#/\n/g’ >> /tmp/brol.txt

nm ../lib/libptesmumps.a | grep -v —-e SCOTCH -e ESMUMPS -e " b " -e " d " -
e "t " -e " U" -e "scotchf" -e "fprintf" -e "fscanf" -e "malloc" -e "
realloc" -e "free" -e "memset" -e "random" -e "get_pc_thunk." -e " r .
LC" | (sed -z 's/\n/#/g’ ; echo -n "#’) | sed ’"s/[a-zA-20-9_]\+[.]o

[:1##%#//g" | sed '"s/#/\n/g’ >> /tmp/brol.txt
more /tmp/brol.txt

8.3.3 Update of copyright year

Verification and possible modification of the copyright year, defined in the “SCOTCH_
COPYRIGHT_STRING” macro:

emacs libscotch/module.h

In case the year is updated, create a commit with the message:

Set year to 20XX in copyright string

41

https://gitlab.inria.fr/scotch/scotch

1

© ® N o oA W N e

[
o

[N Ve

8.3.4 Update of version number

For minor revisions:

emacs Makefile ../doc/src/version.tex ../CMakeLists.txt

Then, for major releases:

emacs ../doc/src/scotch/Makefile ../doc/src/ptscotch/Makefile ../doc/src/
maint/Makefile ../INSTALL.txt ../README.txt

Create a commit with the message:

Set revision marks to vX.Y.Z

8.3.5 Generation of documentation

Once the version number is changed in relevant files, generate the documentation:

cd ../doc/src/maint
make

make install

cd ../ptscotch
make

make install

cd ../scotch

make

make install

cd ../../../src

In case of change of major or minor version, remove the old documentation files and
add the new ones:

cd ../doc/

git rm —-f *X.Y~x

git add *X’.Y'«*

git commit *X.Y* *xX’ .Y’ %
cd ../src

Create a commit with the message:

Generate documentation for vX.Y.Z

8.3.6 Creation of the local tag

On the local master branch:

git tag vX.Y.Z
git push --tags origin

8.3.7 Merging

Check that the continuous integration went well.

In fpellegr/scotch, on the left, in tab “Merge request”, clich on “New merge
request”, to scotch/scotch. Put version number as title (e.g.: “v7.0.7”), and,
in the message, a summary and itemized list of the improvements brought by the
release. Then, click to generate the merge request.

In scotch/scotch, on the left, in tab “Merge request”, click on the new merge
request. Click on “Approve”, then on “Merge”. A new (short) pipe-line is launched,
this time in scotch/scotch.

If the pipe-line succeeds, click to finalize the merging.

42

8.3.8 Creation of the public tag

In the scotch/scotch home page, click on the icon with a label (“Tag”), then
on “New tag”. Put the version number as the tag name (e.g., “v7.0.7”).

8.3.9 Generation of the asset

In the scotch/scotch home page, click on the icon with a rocket (“Releases”),
then on “New release”. Select the newly created tag. Put as comment the text of
the merge request.

43

	Introduction
	Coding style
	Typing
	Spacing
	Aligning
	Idiomatic specificities

	Indenting
	Comments

	Naming conventions
	File inclusion markers
	Variables and fields
	Functions
	Array index basing

	Structure of the libScotch library
	Files and data structures
	Decomposition-defined architecture files

	Data structure explanations
	Dorder
	DorderIndex
	DorderLink
	DorderNode
	DorderCblk

	Graph
	Hgraph
	Kgraph
	Mappings

	Mapping
	Order
	OrderCblk

	Hash tables
	Data structure
	Operation
	Resizing

	Code explanations
	dgraphCoarsenBuild()
	Creating the fine-to-coarse vertex array

	dgraphFold() and dgraphFoldDup()
	dgraphFoldComm()

	dmeshDgraphDual()
	Determining the node vertex range
	Creating node adjacencies
	Making node adjacencies available to concerned elements
	Creating the element-to-element adjacencies

	Procedures for new developments and release
	Adding methods to the libScotch library
	What to add
	Where to add
	Declaring the new method to the parser
	Adding the new method to the Make compilation environment
	Adding the new method to the CMake compilation environment

	Adding routines to the public API
	Release procedure
	Removal of debugging flags
	Symbol renaming
	Update of copyright year
	Update of version number
	Generation of documentation
	Creation of the local tag
	Merging
	Creation of the public tag
	Generation of the asset

